Small Molecule Inhibitors of P. aeruginosa Quinolone (Pqs) Quorum Sensing
铜绿假单胞菌喹诺酮 (Pqs) 群体感应的小分子抑制剂
基本信息
- 批准号:8268842
- 负责人:
- 金额:$ 24.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-01 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeAddressAnabolismAnti-Bacterial AgentsAntibiotic ResistanceAntibioticsBacteriaBacterial Drug ResistanceBindingBiochemicalBiochemistryBiological AssayBiological FactorsBiological MarkersBurn injuryCancer PatientCause of DeathCell CommunicationCellsCellular AssayCoenzyme ACystic FibrosisDevelopmentDrug DesignDrug resistanceEnzymesEvaluationGene ExpressionGenerationsGenesGoalsGram-Negative BacteriaGrowthHIVImmunocompromised HostIn VitroIndividualInfectionInterdisciplinary StudyLaboratoriesLeadLigaseMemorial Sloan-Kettering Cancer CenterMicrobial BiofilmsMicrobiologyMutationNosocomial InfectionsOrganic ChemistryOrganic SynthesisPathogenicityPermeabilityPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPhaseProcessProdrugsProductionPropertyPseudomonasPseudomonas aeruginosaPublic HealthQuinolonesResistanceRouteSeminalSeriesStructureSystemTextTherapeuticVariantVirulenceVirulence FactorsWorkanaloganthranilateantibiotic effluxbacterial geneticsbasecombatdesigndrug developmenthomoserine lactonein vivoinhibitor/antagonistintercellular communicationmethyl anthranilatemouse modelnovelpathogenpathogenic bacteriapreclinical evaluationquorum sensingreceptorresearch clinical testingresponsesmall molecule
项目摘要
DESCRIPTION (provided by applicant): Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that poses a significant public health threat in the context of nosocomial infections, particularly for immunocompromised patients such as burn victims, cancer patients, and individuals having cystic fibrosis or AIDS. P. aeruginosa is also prone to antibiotic resistance, through both intrinsic and acquired mechanisms. Thus, there is a great need for the development of novel anti-Pseudomonas drugs that address unexploited targets, and this is a specific focus of this RFA. To address this problem, we propose herein to develop novel small molecule antibacterials that target the P. aeruginosa quinolone (Pqs) quorum sensing system. This is a pharmacologically validated target in a mouse model of infection and is distinct from acyl homoserine lactone (Las, Rhl) quorum sensing systems. Quinolones are small molecules that are biosynthesized by the bacteria and used in cell-cell signaling. They control expression of a variety of bacterial virulence factor genes that are associated with pathogenicity but are not
required for bacterial viability or growth. As such, novel antibacterials that target such virulenc factors are thought less likely to elicit drug resistance compared to traditional bacteriotoxic and
bacteriostatic antibiotics. Building upon extensive previous work from the three participating laboratories (Tan, Rahme, Pesci), we will use mechanism- and structure-based rational drug design to develop small molecule inhibitors of PqsA, an anthraniloyl-CoA synthetase that catalyzes an essential step in P. aeruginosa quinolone biosynthesis. PqsA has been validated as an effective antibacterial target in a mouse model using simple substrate analogues, but more potent and specific inhibitors are required to exploit fully the therapeutic potential of this
target. In the R21 phase, we will synthesize first-generation inhibitors using a rational design strategy that has been applied successfully to related targets in the Tan lab, then evaluate their activities in biochemical and cellular assays for PqsA activity and quinolone production established previously in the Pesci and Rahme labs. In the R33 phase, we will optimize the biochemical, cellular, and pharmacological properties of the inhibitors to develop lead compounds that will then be advanced to in vivo evaluation in established mouse models of P. aeruginosa infection in the Rahme lab. This multidisciplinary collaboration comprises the necessary combined expertise in synthetic organic chemistry, medicinal chemistry, biochemistry, pharmacology, and microbiology. Our long- term goals are to develop one or more advanced candidates for further preclinical and clinical evaluation as novel antibiotics to combat P. aeruginosa and potentially other pathogenic Gram-negative bacteria.
PUBLIC HEALTH RELEVANCE: Pseudomonas aeruginosa is a pathogenic bacteria that poses a significant public health threat to hospitalized, immunocompromised patients such as burn victims, cancer patients, and individuals having cystic fibrosis or AIDS. The goal of this project is to develop novel antibacterial drugs to combat P. aeruginosa infections by targeting a bacterial process called quorum sensing, which is associated with virulence and pathogenicity and may be less prone to eliciting antibacterial resistance.
描述(由申请人提供): 铜绿假单胞菌是一种机会性革兰氏阴性病原体,其在医院感染的背景下构成重大的公共卫生威胁,特别是对于免疫功能低下的患者,如烧伤患者、癌症患者和患有囊性纤维化或AIDS的个体。铜绿假单胞菌也容易通过内在和获得性机制产生抗生素耐药性。因此,非常需要开发针对未开发目标的新型抗假单胞菌药物,这是RFA的一个具体重点。为了解决这个问题,我们在此提出开发靶向铜绿假单胞菌喹诺酮(Pqs)群体感应系统的新型小分子抗菌剂。这是在小鼠感染模型中的经验证的靶标,并且不同于酰基高丝氨酸内酯(Las,Rhl)群体感应系统。喹诺酮是由细菌生物合成的小分子,用于细胞-细胞信号传导。它们控制多种与致病性相关的细菌毒力因子基因的表达,但不影响致病性。
是细菌存活或生长所必需的。因此,与传统的细菌毒性和耐药性相比,靶向这些致病因子的新型抗菌药物被认为不太可能引起耐药性。
抑菌抗生素在三个参与实验室(Tan,Rahme,Pesci)的广泛先前工作的基础上,我们将使用基于机制和结构的合理药物设计来开发PqsA的小分子抑制剂,PqsA是一种邻氨基苯酰辅酶A合成酶,催化铜绿假单胞菌喹诺酮生物合成的重要步骤。PqsA已经在使用简单底物类似物的小鼠模型中被验证为有效的抗菌靶标,但是需要更有效和特异性的抑制剂来充分利用这种抑制剂的治疗潜力。
目标在R21阶段,我们将使用合理的设计策略合成第一代抑制剂,该策略已成功应用于Tan实验室的相关靶标,然后在Pesci和Rahme实验室先前建立的PqsA活性和喹诺酮生产的生化和细胞测定中评估其活性。在R33阶段,我们将优化抑制剂的生物化学,细胞和药理学特性,以开发先导化合物,然后在Rahme实验室建立的铜绿假单胞菌感染小鼠模型中进行体内评价。这种多学科合作包括合成有机化学,药物化学,生物化学,药理学和微生物学方面的必要综合专业知识。我们的长期目标是开发一种或多种先进的候选药物,用于进一步的临床前和临床评价,作为对抗铜绿假单胞菌和潜在的其他致病性革兰氏阴性菌的新型抗生素。
公共卫生相关性:铜绿假单胞菌是一种致病性细菌,对住院的免疫功能低下的患者如烧伤患者、癌症患者和患有囊性纤维化或AIDS的个体构成重大的公共卫生威胁。该项目的目标是开发新型抗菌药物,通过靶向称为群体感应的细菌过程来对抗铜绿假单胞菌感染,该过程与毒力和致病性相关,并且可能不太容易引发抗菌药物耐药性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEREK S TAN其他文献
DEREK S TAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEREK S TAN', 18)}}的其他基金
Tri-Institutional PhD Program in Chemical Biology
化学生物学三机构博士项目
- 批准号:
10618939 - 财政年份:2020
- 资助金额:
$ 24.38万 - 项目类别:
Tri-Institutional PhD Program in Chemical Biology
化学生物学三机构博士项目
- 批准号:
10414800 - 财政年份:2020
- 资助金额:
$ 24.38万 - 项目类别:
Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria
革兰氏阴性细菌中小分子积累的预测模型
- 批准号:
10226047 - 财政年份:2018
- 资助金额:
$ 24.38万 - 项目类别:
Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria
革兰氏阴性细菌中小分子积累的预测模型
- 批准号:
10460988 - 财政年份:2018
- 资助金额:
$ 24.38万 - 项目类别:
Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria
革兰氏阴性细菌中小分子积累的预测模型
- 批准号:
9761970 - 财政年份:2018
- 资助金额:
$ 24.38万 - 项目类别:
Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria
革兰氏阴性细菌中小分子积累的预测模型
- 批准号:
9982190 - 财政年份:2018
- 资助金额:
$ 24.38万 - 项目类别:
Tri-Institutional PhD Program in Chemical Biology
化学生物学三机构博士项目
- 批准号:
9306134 - 财政年份:2015
- 资助金额:
$ 24.38万 - 项目类别:
Tri-Institutional PhD Program in Chemical Biology
化学生物学三机构博士项目
- 批准号:
8935325 - 财政年份:2015
- 资助金额:
$ 24.38万 - 项目类别:
Tri-Institutional PhD Program in Chemical Biology
化学生物学三机构博士项目
- 批准号:
9098769 - 财政年份:2015
- 资助金额:
$ 24.38万 - 项目类别:
Rational Design of Adenylation Enzyme Inhibitors
腺苷酸化酶抑制剂的合理设计
- 批准号:
8675862 - 财政年份:2012
- 资助金额:
$ 24.38万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 24.38万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 24.38万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 24.38万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 24.38万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 24.38万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 24.38万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 24.38万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.38万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.38万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 24.38万 - 项目类别:
Research Grant














{{item.name}}会员




