Physiology of bacterial metabolism in the human gut microbiome
人类肠道微生物群中细菌代谢的生理学
基本信息
- 批准号:10275848
- 负责人:
- 金额:$ 39.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-02 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcidsAminesBacteriaBacterial PhysiologyButyratesDiseaseFutureGeneticGenetic DeterminismGrowthHealthHumanIndolesKnowledgeLightLinkMapsMetabolicMetabolic ControlMetabolic PathwayMetabolismMicrobeNatureNutrientOutputPathway interactionsPharmaceutical PreparationsPhysiologyPlayProcessRoleSecureTechniquesVolatile Fatty Acidsbacterial geneticsbacterial metabolismcommensal bacteriadietarydrug productiongenome-widegut bacteriagut microbiomegut microbiotainsightmetabolic abnormality assessmentmetabolomicsmicrobialmicrobiomesmall moleculetooltrimethylamine
项目摘要
Summary:
One of the biggest gaps in our knowledge of the human gut microbiome is how microbes secure the energy
and nutrients required to sustain their growth. This is an important deficit in light of the fact that microbial
pathways produce short chain fatty acids like butyrate, indoles like indolepropionic acid, and amines like
trimethylamine, all of which play a critical role in host physiology and disease. Understanding the metabolic
processes that underlie why microbes make these molecules is critical for developing strategies to predictably
control the metabolic output of the gut microbiota.
Despite the importance of microbial metabolism in the gut to human physiology, we know very little about the
nature of these metabolic pathways. A key gap in knowledge is how pathways for high abundance metabolites
is linked to the physiology of commensal bacteria. Knowledge of these metabolic strategies is critical to
developing strategies aimed at predictably modulating the metabolic output of the gut microbiota. One of the
major challenges to studying the gut microbiota is that genetic tools are only available for a small subset of
bacteria. Therefore, new tools are urgently needed to study the physiology and metabolism of genetically
intractable microbes.
In this project, we will use techniques in bacterial physiology and genetics to uncover how microbes in the gut
capture energy from dietary nutrients, and how these processes contribute to drug-like small molecules that
influence host physiology. We will also develop a new metabolomics approach to generate genome-wide maps
of genetic determinants of microbial small molecules in genetically tractable and intractable gut bacteria. These
studies will provide fundamental insights into several of the microbiome's core functions and will stimulate
future avenues for inquiry into the human gut microbiome.
总结:
我们对人类肠道微生物组的了解中最大的差距之一是微生物如何获得能量
以及维持其生长所需的营养。这是一个重要的缺陷,因为微生物
途径产生短链脂肪酸,如丁酸,吲哚,如吲哚丙酸,和胺,
三甲胺,所有这些都在宿主生理和疾病中起关键作用。了解代谢
微生物制造这些分子的基本过程对于开发可预测的
控制肠道微生物群的代谢输出。
尽管肠道中的微生物代谢对人体生理学的重要性,但我们对肠道中的微生物代谢知之甚少。
这些代谢途径的性质。知识的一个关键差距是高丰度代谢物的途径
与肠道细菌的生理学有关。了解这些代谢策略对于
开发旨在可预测地调节肠道微生物群的代谢输出的策略。之一
研究肠道微生物群的主要挑战是,遗传工具只适用于一小部分人,
细菌因此,迫切需要新的工具来研究遗传学上的生理和代谢。
难对付的微生物
在这个项目中,我们将使用细菌生理学和遗传学的技术来揭示肠道中的微生物是如何
从膳食营养素中捕获能量,以及这些过程如何有助于药物样小分子,
影响宿主生理。我们还将开发一种新的代谢组学方法来生成全基因组图谱
微生物小分子的遗传决定因素在遗传上易处理和难处理的肠道细菌。这些
这些研究将为微生物组的几个核心功能提供基本的见解,并将刺激
人类肠道微生物组研究的未来途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dylan Dodd其他文献
Dylan Dodd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dylan Dodd', 18)}}的其他基金
Microbiota-based probiotics to treat inborn errors in metabolism
基于微生物群的益生菌可治疗先天性代谢缺陷
- 批准号:
10365689 - 财政年份:2022
- 资助金额:
$ 39.74万 - 项目类别:
Microbiota-based probiotics to treat inborn errors in metabolism
基于微生物群的益生菌可治疗先天性代谢缺陷
- 批准号:
10574622 - 财政年份:2022
- 资助金额:
$ 39.74万 - 项目类别:
Physiology of bacterial metabolism in the human gut microbiome
人类肠道微生物群中细菌代谢的生理学
- 批准号:
10460570 - 财政年份:2021
- 资助金额:
$ 39.74万 - 项目类别:
Physiology of bacterial metabolism in the human gut microbiome
人类肠道微生物群中细菌代谢的生理学
- 批准号:
10686712 - 财政年份:2021
- 资助金额:
$ 39.74万 - 项目类别:
Physiology of bacterial metabolism in the human gut microbiome
人类肠道微生物群中细菌代谢的生理学
- 批准号:
10623328 - 财政年份:2021
- 资助金额:
$ 39.74万 - 项目类别:
Modulation of gut bacteria-derived host metabolites
肠道细菌衍生的宿主代谢物的调节
- 批准号:
9453251 - 财政年份:2018
- 资助金额:
$ 39.74万 - 项目类别:
Biochemical Characterization of Specificity for Family 3 Glycoside Hydrolases
家族 3 糖苷水解酶特异性的生化表征
- 批准号:
8212226 - 财政年份:2010
- 资助金额:
$ 39.74万 - 项目类别:
Biochemical Characterization of Specificity for Family 3 Glycoside Hydrolases
家族 3 糖苷水解酶特异性的生化表征
- 批准号:
7936105 - 财政年份:2010
- 资助金额:
$ 39.74万 - 项目类别:
Biochemical Characterization of Specificity for Family 3 Glycoside Hydrolases
家族 3 糖苷水解酶特异性的生化表征
- 批准号:
7753991 - 财政年份:2010
- 资助金额:
$ 39.74万 - 项目类别:
Biochemical Characterization of Specificity for Family 3 Glycoside Hydrolases
家族 3 糖苷水解酶特异性的生化表征
- 批准号:
8387025 - 财政年份:2010
- 资助金额:
$ 39.74万 - 项目类别:
相似海外基金
More sustainable biocatalytic imine reductions to chiral amines with hydrogen-driven NADPH recycling operated in batch and continuous flow
通过批量和连续流操作的氢驱动 NADPH 回收,更可持续地生物催化亚胺还原为手性胺
- 批准号:
2889869 - 财政年份:2023
- 资助金额:
$ 39.74万 - 项目类别:
Studentship
Organoborane-catalysed approaches to biologically active amines
有机硼烷催化制备生物活性胺的方法
- 批准号:
EP/Y00146X/1 - 财政年份:2023
- 资助金额:
$ 39.74万 - 项目类别:
Research Grant
Transforming Amines into Complex Polycyclic Molecules and Bioactive Natural Products
将胺转化为复杂的多环分子和生物活性天然产物
- 批准号:
2247651 - 财政年份:2023
- 资助金额:
$ 39.74万 - 项目类别:
Standard Grant
Ti-catalyzed cascading hydroaminoalkylation as a route to complex functionalized amines
Ti 催化级联氢氨基烷基化作为制备复杂官能化胺的途径
- 批准号:
10750347 - 财政年份:2023
- 资助金额:
$ 39.74万 - 项目类别:
New Photocatalytic C-C Bond-Forming Reactivity of Unprotected Primary Amines
未受保护伯胺的新光催化 C-C 键形成反应
- 批准号:
EP/X026566/1 - 财政年份:2023
- 资助金额:
$ 39.74万 - 项目类别:
Research Grant
Nickel Cross-Coupling Cascades with α-Heteroatom Radicals to Prepare Sterically Hindered Alcohols and Amines
镍与α-杂原子自由基交叉偶联级联制备位阻醇和胺
- 批准号:
10604535 - 财政年份:2023
- 资助金额:
$ 39.74万 - 项目类别:
Towards a better understanding of the effect of the pentafluorosulfanyl group on the lipophilicity and acid/base properties of alcohols and amines
更好地了解五氟硫基对醇和胺的亲脂性和酸/碱性质的影响
- 批准号:
571856-2021 - 财政年份:2022
- 资助金额:
$ 39.74万 - 项目类别:
Alliance Grants
Development of Strategies for the Enantioselective Synthesis of Heterocycles and Acyclic Amines
杂环和无环胺对映选择性合成策略的发展
- 批准号:
10656344 - 财政年份:2022
- 资助金额:
$ 39.74万 - 项目类别:
Pd-Catalyzed C(sp3)-H Functionalizations Directed by Free Alcohols and Boc-Protected Amines
由游离醇和 Boc 保护的胺引导的 Pd 催化 C(sp3)-H 官能化
- 批准号:
10606508 - 财政年份:2022
- 资助金额:
$ 39.74万 - 项目类别:














{{item.name}}会员




