Microbiota-based probiotics to treat inborn errors in metabolism
基于微生物群的益生菌可治疗先天性代谢缺陷
基本信息
- 批准号:10574622
- 负责人:
- 金额:$ 58.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-16 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:Alternative TherapiesAmino AcidsBacteriaBiochemicalBiochemistryBloodChemicalsClassical phenylketonuriaDefectDevelopmentDietDistalDrug Metabolic DetoxicationEngineered ProbioticsEnzymesFoundationsFutureGastrointestinal tract structureGene ClusterGene CombinationsGene Expression ProfilingGenesGeneticGenetic DiseasesGnotobioticGoalsHereditary DiseaseHomeHumanHuman GeneticsHuman bodyImmuneIn VitroIndividualInjectableInvestigationLibrariesMeasuresMediatingMetabolicMetabolic ControlMetabolic PathwayMetabolismMicrobeModelingMusMutationOral AdministrationOrganPathway interactionsPatientsPeptidesPhenylalaninePhenylalanine Metabolism PathwayPhenylketonuriasPlasmaPoisonPolysaccharidesProbioticsRegulatory PathwayResourcesRoleRunningSamplingSmall IntestinesTestingWorkbacterial geneticsbeneficial microorganismgut bacteriagut microbesgut microbiotahost microbiotainsightmembermetabolomicsmicrobialmicrobiomemicrobiotamouse modelnovelnovel strategiespublic health relevanceside effectstable isotopetranscriptome sequencingtranscriptomicsunpublished works
项目摘要
Project Summary/Abstract
The human gut is a metabolic organ where anaerobic microbial pathways run at high capacity, expanding the
biochemical landscape of the human body. Exploiting members of the gut microbiota and the metabolic
pathways they encode represents an exciting new strategy to treat genetically encoded biochemical defects in
humans such as Phenylketonuria. There are three reasons why identifying new microbiota probiotics should
be a priority: 1) Gut microbes represent an important yet untapped resource for new metabolic pathways that
influence human biochemistry. 2) Microbiota pathways are present in healthy individuals, and their metabolic
end products are unlikely to be toxic to humans. 3) Native, non-genetically modified strains are likely to have a
straightforward regulatory pathway for use in humans. While this proposal is focused on identifying microbes
and pathways to reduce blood phenylalanine levels to treat phenylketonuria, our long-term goal is to lay the
foundation for an entirely new approach to treat inborn errors in metabolism: controlling metabolic circuits via
the gut microbiota. Our proposal is organized into the following two aims: In Aim 1, we will use gene cluster
searches, transcriptomics, genetics, and metabolomics to identify and characterize anaerobic pathways for
phenylalanine metabolism by gut bacteria. In Aim 2, we will assess the ability of microbial pathways to reduce
plasma Phe levels in a gnotobiotic mouse model of phenylketonuria (PKU). Our results will not only provide
new insights into how the microbiome expands the biochemical landscape of the host but will also lay the
groundwork for a new approach to treating inborn errors in metabolism.
项目总结/摘要
人类肠道是一个代谢器官,其中厌氧微生物途径以高容量运行,扩大了肠道的生物量。
人体的生化景观。利用肠道微生物群和代谢
它们编码的途径代表了一种令人兴奋的新策略,可以治疗遗传编码的生化缺陷,
人类如苯丙酮尿症。有三个原因表明,识别新的微生物群益生菌应该
优先考虑:1)肠道微生物是新代谢途径的重要但尚未开发的资源,
影响人类生物化学。2)微生物群途径存在于健康个体中,其代谢
最终产品不太可能对人类有毒。3)天然的、非转基因的菌株可能具有
用于人类的直接调控途径。虽然这项提案的重点是识别微生物
以及降低血液苯丙氨酸水平以治疗苯丙酮尿症的途径,我们的长期目标是奠定
一个全新的方法来治疗先天性代谢缺陷的基础:通过
肠道菌群。我们的建议分为以下两个目标:在目标1中,我们将使用基因簇
搜索,转录组学,遗传学和代谢组学,以确定和表征厌氧途径,
苯丙氨酸代谢的肠道细菌。在目标2中,我们将评估微生物途径减少
苯丙酮尿症(PKU)的无菌小鼠模型中的血浆Phe水平。我们的研究结果不仅能提供
关于微生物组如何扩大宿主的生化景观的新见解,但也将奠定
为治疗先天性代谢缺陷的新方法奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dylan Dodd其他文献
Dylan Dodd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dylan Dodd', 18)}}的其他基金
Microbiota-based probiotics to treat inborn errors in metabolism
基于微生物群的益生菌可治疗先天性代谢缺陷
- 批准号:
10365689 - 财政年份:2022
- 资助金额:
$ 58.79万 - 项目类别:
Physiology of bacterial metabolism in the human gut microbiome
人类肠道微生物群中细菌代谢的生理学
- 批准号:
10460570 - 财政年份:2021
- 资助金额:
$ 58.79万 - 项目类别:
Physiology of bacterial metabolism in the human gut microbiome
人类肠道微生物群中细菌代谢的生理学
- 批准号:
10686712 - 财政年份:2021
- 资助金额:
$ 58.79万 - 项目类别:
Physiology of bacterial metabolism in the human gut microbiome
人类肠道微生物群中细菌代谢的生理学
- 批准号:
10623328 - 财政年份:2021
- 资助金额:
$ 58.79万 - 项目类别:
Physiology of bacterial metabolism in the human gut microbiome
人类肠道微生物群中细菌代谢的生理学
- 批准号:
10275848 - 财政年份:2021
- 资助金额:
$ 58.79万 - 项目类别:
Modulation of gut bacteria-derived host metabolites
肠道细菌衍生的宿主代谢物的调节
- 批准号:
9453251 - 财政年份:2018
- 资助金额:
$ 58.79万 - 项目类别:
Biochemical Characterization of Specificity for Family 3 Glycoside Hydrolases
家族 3 糖苷水解酶特异性的生化表征
- 批准号:
8212226 - 财政年份:2010
- 资助金额:
$ 58.79万 - 项目类别:
Biochemical Characterization of Specificity for Family 3 Glycoside Hydrolases
家族 3 糖苷水解酶特异性的生化表征
- 批准号:
7936105 - 财政年份:2010
- 资助金额:
$ 58.79万 - 项目类别:
Biochemical Characterization of Specificity for Family 3 Glycoside Hydrolases
家族 3 糖苷水解酶特异性的生化表征
- 批准号:
7753991 - 财政年份:2010
- 资助金额:
$ 58.79万 - 项目类别:
Biochemical Characterization of Specificity for Family 3 Glycoside Hydrolases
家族 3 糖苷水解酶特异性的生化表征
- 批准号:
8387025 - 财政年份:2010
- 资助金额:
$ 58.79万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 58.79万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 58.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 58.79万 - 项目类别:
Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 58.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 58.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 58.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 58.79万 - 项目类别:
Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 58.79万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 58.79万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 58.79万 - 项目类别: