Multi-Center Implementation and Validation of Efficient Magnetic Resonance Imaging and Analysis of Atherosclerotic Disease of the Cervical Carotid

颈动脉粥样硬化疾病高效磁共振成像和分析的多中心实施和验证

基本信息

  • 批准号:
    10280858
  • 负责人:
  • 金额:
    $ 133.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Abstract: Numerous investigations over the past decades have yielded substantial innovations in MR methods for the characterization of extracranial carotid atherosclerosis. Images obtained with these innovations under ideal conditions have given clinicians rich information about disease in the arterial wall and the hope for tools critically needed for adequate management of this insidious disease. Despite this, the great potential power of this technology has not made it into the routine clinical armamentarium. Indeed, because of the need for gadolinium-based contrast agents (GBCA), the long exam time (typically about 45 minutes to obtain the multiple contrasts in the 5 or 6 necessary sequences), and the steep learning curve required to interpret multi- contrast MRI most practitioners still revert to the simplified metric of diameter stenosis in assessing risk. After many collective years of investigations, the consortium of investigators collaborating on this proposal believes that the time is right to address these remaining limitations and ultimately shift the clinical paradigm. Overarching hypothesis: To achieve the great potential in the management of cervical carotid disease, a highly efficient and easily used MRI technique is required. Our hypothesis is that this can be accomplished using multi-parametric non-contrast MRI sequences coupled with the latest high signal to noise ratio (SNR) neck-shape-specific (NSS) RF coils and innovative machine learning (deep neural network) analysis methods. Aim 1: We will install identical RF coils, MRI sequences, and protocols at each of our 5 participating centers as well as rigorously test the accuracy of measurements and reproducibility of image quality from all centers. Aim 2: We will develop, train, and validate a user friendly, deep learning neural network system for the quantitative analysis of several key components considered to be present in the vulnerable atherosclerotic plaque. Aim 3: We will apply the analysis to a cohort of carotid disease subjects to establish the repeatability of the quantitative measures, as well as the accuracy of characterization in comparison to histopathology. Although we will develop and test the image quality, reproducibility and reliability in a network of highly skilled academic centers, we will design these methods to be applicable in the community hospital setting. At the conclusion of this project, we propose to have an integrated solution that can be used in subsequent investigations such as: the effect of pharmacologic intervention in modifying the composition of the plaque; studying the evolution of features of the untreated atheromatous disease over time; and, eventually, investigating the metrics that are predictive of deleterious outcomes, and that can be used in improving intervention strategies in this population. On successful completion, the RF coils and MRI sequences and analysis methods will be made available to other imaging centers in a manner that ultimately changes the paradigm of diagnosis and managing the treatment of cervical carotid atherosclerotic disease.
文摘:

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria I. Altbach其他文献

Maria I. Altbach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maria I. Altbach', 18)}}的其他基金

Quantitative MRI and Deep Learning Technologies for Classification of NAFLD
用于 NAFLD 分类的定量 MRI 和深度学习技术
  • 批准号:
    10668430
  • 财政年份:
    2022
  • 资助金额:
    $ 133.11万
  • 项目类别:
Quantitative MRI and Deep Learning Technologies for Classification of NAFLD
用于 NAFLD 分类的定量 MRI 和深度学习技术
  • 批准号:
    10453927
  • 财政年份:
    2022
  • 资助金额:
    $ 133.11万
  • 项目类别:
Multi-Center Implementation and Validation of Efficient Magnetic Resonance Imaging and Analysis of Atherosclerotic Disease of the Cervical Carotid
颈动脉粥样硬化疾病高效磁共振成像和分析的多中心实施和验证
  • 批准号:
    10684192
  • 财政年份:
    2021
  • 资助金额:
    $ 133.11万
  • 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
  • 批准号:
    10320434
  • 财政年份:
    2019
  • 资助金额:
    $ 133.11万
  • 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
  • 批准号:
    10524177
  • 财政年份:
    2019
  • 资助金额:
    $ 133.11万
  • 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
  • 批准号:
    10531585
  • 财政年份:
    2019
  • 资助金额:
    $ 133.11万
  • 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
  • 批准号:
    10063981
  • 财政年份:
    2019
  • 资助金额:
    $ 133.11万
  • 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
  • 批准号:
    7261647
  • 财政年份:
    2007
  • 资助金额:
    $ 133.11万
  • 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
  • 批准号:
    7595080
  • 财政年份:
    2007
  • 资助金额:
    $ 133.11万
  • 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
  • 批准号:
    7391543
  • 财政年份:
    2007
  • 资助金额:
    $ 133.11万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 133.11万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 133.11万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 133.11万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 133.11万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 133.11万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 133.11万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 133.11万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 133.11万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 133.11万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 133.11万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了