Multi-Center Implementation and Validation of Efficient Magnetic Resonance Imaging and Analysis of Atherosclerotic Disease of the Cervical Carotid
颈动脉粥样硬化疾病高效磁共振成像和分析的多中心实施和验证
基本信息
- 批准号:10684192
- 负责人:
- 金额:$ 120.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcademic skillsAddressArterial Fatty StreakAtherosclerosisCarotid ArteriesCarotid Artery PlaquesCarotid Atherosclerotic DiseaseCephalicCervicalClassificationClinicalCollaborationsCommunity HospitalsComputer softwareContrast MediaCoupledDataDiagnosisDiameterDiseaseEquipmentEvolutionGadoliniumGoalsHistologyHistopathologyImageInterventionInvestigationLearningMachine LearningMagnetic Resonance ImagingMapsMeasurementMeasuresMethodsNeckNoiseOutcomePatientsPhysiologic pulsePopulationProtocols documentationRF coilReadingReportingReproducibilityResearch PersonnelRiskRisk AssessmentShapesSignal TransductionStenosisSystemTechniquesTechnologyTestingTimeTrainingValidationVendorclinical practicecohortdeep neural networkdesignexperienceimaging facilitiesimaging modalityimprovedinnovationmachine learning classificationpatient populationpharmacologicskillsstroke risksuccesstooluser-friendly
项目摘要
Abstract:
Numerous investigations over the past decades have yielded substantial innovations in MR methods for the
characterization of extracranial carotid atherosclerosis. Images obtained with these innovations under ideal
conditions have given clinicians rich information about disease in the arterial wall and the hope for tools
critically needed for adequate management of this insidious disease. Despite this, the great potential power of
this technology has not made it into the routine clinical armamentarium. Indeed, because of the need for
gadolinium-based contrast agents (GBCA), the long exam time (typically about 45 minutes to obtain the
multiple contrasts in the 5 or 6 necessary sequences), and the steep learning curve required to interpret multi-
contrast MRI most practitioners still revert to the simplified metric of diameter stenosis in assessing risk. After
many collective years of investigations, the consortium of investigators collaborating on this proposal believes
that the time is right to address these remaining limitations and ultimately shift the clinical paradigm.
Overarching hypothesis: To achieve the great potential in the management of cervical carotid disease, a
highly efficient and easily used MRI technique is required. Our hypothesis is that this can be accomplished
using multi-parametric non-contrast MRI sequences coupled with the latest high signal to noise ratio (SNR)
neck-shape-specific (NSS) RF coils and innovative machine learning (deep neural network) analysis methods.
Aim 1: We will install identical RF coils, MRI sequences, and protocols at each of our 5 participating centers as
well as rigorously test the accuracy of measurements and reproducibility of image quality from all centers. Aim
2: We will develop, train, and validate a user friendly, deep learning neural network system for the quantitative
analysis of several key components considered to be present in the vulnerable atherosclerotic plaque. Aim 3:
We will apply the analysis to a cohort of carotid disease subjects to establish the repeatability of the
quantitative measures, as well as the accuracy of characterization in comparison to histopathology. Although
we will develop and test the image quality, reproducibility and reliability in a network of highly skilled academic
centers, we will design these methods to be applicable in the community hospital setting. At the conclusion of
this project, we propose to have an integrated solution that can be used in subsequent investigations such as:
the effect of pharmacologic intervention in modifying the composition of the plaque; studying the evolution of
features of the untreated atheromatous disease over time; and, eventually, investigating the metrics that are
predictive of deleterious outcomes, and that can be used in improving intervention strategies in this population.
On successful completion, the RF coils and MRI sequences and analysis methods will be made available to
other imaging centers in a manner that ultimately changes the paradigm of diagnosis and managing the
treatment of cervical carotid atherosclerotic disease.
摘要:
在过去的几十年里,大量的研究已经在磁共振方法上产生了实质性的创新
颅外颈动脉粥样硬化的特征。在理想下用这些创新获得的图像
这种情况给临床医生提供了关于动脉壁疾病的丰富信息和工具的希望。
对这一潜伏疾病的适当管理是极其必要的。尽管如此,互联网的巨大潜力
这项技术还没有进入常规的临床医疗机构。事实上,因为需要
格拉基造影剂(GBCA),检查时间长(通常约45分钟,以获得
5或6个必要序列中的多个对比),以及解释多个序列所需的陡峭学习曲线
对比剂MRI大多数从业者在评估风险时仍采用简化的直径狭窄指标。之后
经过多年的集体调查,参与这项提案的调查人员联盟认为
现在是解决这些剩余限制并最终改变临床范式的时候了。
总体假设:为了实现颈动脉疾病治疗的巨大潜力,
需要高效、易用的磁共振成像技术。我们的假设是,这是可以实现的
使用多参数非对比MRI序列,结合最新的高信噪比(SNR)
颈部特定形状(NSS)射频线圈和创新的机器学习(深度神经网络)分析方法。
目标1:我们将在我们的5个参与中心中的每个中心安装相同的RF线圈、MRI序列和方案
以及严格测试所有中心的测量精度和图像质量的再现性。目标
2:我们将开发、培训和验证一个用户友好的、深度学习的神经网络系统
对易损动脉粥样硬化斑块中存在的几个关键成分进行分析。目标3:
我们将把这项分析应用于一组颈动脉疾病受试者,以确定
定量测量,以及与组织病理学相比较的定性的准确性。虽然
我们将在一个高技能的学术网络中开发和测试图像质量、重复性和可靠性
我们将把这些方法设计成适用于社区医院的环境。在……结束时
在这个项目中,我们建议有一个可用于后续调查的综合解决方案,例如:
药物干预改变斑块成分的作用;研究斑块的演变
随着时间的推移,未经治疗的动脉粥样硬化性疾病的特征;并最终调查
对有害结果的预测,这可用于改进该人群的干预策略。
在成功完成后,射频线圈和核磁共振序列和分析方法将可用于
其他成像中心的方式最终改变了诊断和管理
颈动脉粥样硬化性疾病的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria I. Altbach其他文献
Maria I. Altbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria I. Altbach', 18)}}的其他基金
Quantitative MRI and Deep Learning Technologies for Classification of NAFLD
用于 NAFLD 分类的定量 MRI 和深度学习技术
- 批准号:
10668430 - 财政年份:2022
- 资助金额:
$ 120.63万 - 项目类别:
Quantitative MRI and Deep Learning Technologies for Classification of NAFLD
用于 NAFLD 分类的定量 MRI 和深度学习技术
- 批准号:
10453927 - 财政年份:2022
- 资助金额:
$ 120.63万 - 项目类别:
Multi-Center Implementation and Validation of Efficient Magnetic Resonance Imaging and Analysis of Atherosclerotic Disease of the Cervical Carotid
颈动脉粥样硬化疾病高效磁共振成像和分析的多中心实施和验证
- 批准号:
10280858 - 财政年份:2021
- 资助金额:
$ 120.63万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10320434 - 财政年份:2019
- 资助金额:
$ 120.63万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10524177 - 财政年份:2019
- 资助金额:
$ 120.63万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10531585 - 财政年份:2019
- 资助金额:
$ 120.63万 - 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:
10063981 - 财政年份:2019
- 资助金额:
$ 120.63万 - 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
- 批准号:
7261647 - 财政年份:2007
- 资助金额:
$ 120.63万 - 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
- 批准号:
7595080 - 财政年份:2007
- 资助金额:
$ 120.63万 - 项目类别:
Detection of Lipid Infiltration in the Heart with MRI
MRI 检测心脏脂质浸润
- 批准号:
7391543 - 财政年份:2007
- 资助金额:
$ 120.63万 - 项目类别:
相似海外基金
Development of Analysis System of Academic Skills and Learning Status for Curriculum Management
课程管理学术技能与学习状况分析系统的开发
- 批准号:
19K02703 - 财政年份:2019
- 资助金额:
$ 120.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on holistic evaluation focusing on non-academic skills in entrance examinations for higher school under the old systems.
旧体制下高考非学业技能整体评价研究
- 批准号:
19K02854 - 财政年份:2019
- 资助金额:
$ 120.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Academic skills and reproductive behavior among adolescent girls.
青春期女孩的学术技能和生殖行为。
- 批准号:
9224720 - 财政年份:2016
- 资助金额:
$ 120.63万 - 项目类别:
The Study of Social Processes to Acquire Academic Skills in the Transition from Pre-School to Elementary Schoolhonk
从学前班到小学过渡期间获得学术技能的社会过程研究honk
- 批准号:
16K17422 - 财政年份:2016
- 资助金额:
$ 120.63万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of teaching materials and methods to deepen self-awareness of basic academic skills on emphasized EQ of univercity students at first-year students
开发一年级学生强调情商的教材和方法以加深基本学术技能的自我意识
- 批准号:
15K01045 - 财政年份:2015
- 资助金额:
$ 120.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Preventing Drug Use: Interactive Program to Improve Academic Skills
预防吸毒:提高学术技能的互动计划
- 批准号:
7802476 - 财政年份:2010
- 资助金额:
$ 120.63万 - 项目类别:
Development of Ubiquitous Support System for Teachers and Parents to Enrich Academic Skills of Students
开发教师和家长无处不在的支持系统,以丰富学生的学术技能
- 批准号:
15300278 - 财政年份:2003
- 资助金额:
$ 120.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enhancing basic academic skills of low-achieving students: the role of automaticity in numeracy, reading and comprehension
提高成绩差的学生的基本学术技能:自动性在计算、阅读和理解中的作用
- 批准号:
DP0345508 - 财政年份:2003
- 资助金额:
$ 120.63万 - 项目类别:
Discovery Projects
DISCOURSE AND ACADEMIC SKILLS IN CHILDREN WITH SPINA BIFIDA
脊柱裂儿童的言语和学术技能
- 批准号:
6564761 - 财政年份:2002
- 资助金额:
$ 120.63万 - 项目类别:
DISCOURSE AND ACADEMIC SKILLS IN CHILDREN WITH SPINA BIFIDA
脊柱裂儿童的言语和学术技能
- 批准号:
6449388 - 财政年份:2001
- 资助金额:
$ 120.63万 - 项目类别: