Quantitative characterization of neuronal trans-SNARE complexes using DNA origami
使用 DNA 折纸对神经元 trans-SNARE 复合物进行定量表征
基本信息
- 批准号:10281683
- 负责人:
- 金额:$ 41.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBasic ScienceBindingCell membraneCleaved cellClostridial NeurotoxinComplexConsensusDNADNA StructureDiseaseDockingElectron MicroscopeEnvironmentExocytosisFreezingIn VitroIndividualInvestigationKnowledgeLengthLibrariesLipid BilayersLipidsMeasurementMediatingMembraneMembrane FusionMembrane ProteinsMental disordersMethodsMolecular ConformationMutationNanotechnologyNeuraxisNeuronsNeurosciencesNeurotoxicity SyndromesNeurotoxinsOpticsPathogenesisPlayPositioning AttributeProbabilityProcessProteinsResearchResistanceRoleS-nitro-N-acetylpenicillamineSNAP receptorSpectrum AnalysisStructureSynapsesSynaptic CleftSynaptic ReceptorsSynaptic VesiclesTechniquesTechnologyTransmembrane DomainVesicleVisualizationalpha helixarmbaseclinical practicedensitydriving forceexperimental studygenetic regulatory proteinhuman diseaseimprovedinterestmechanical propertiesmutantnanodisknanoscaleneurophysiologyneurotransmissionneurotransmitter releasenovelpreventprogramsprotein complexprotein functionreconstitutionrecruitscaffoldsingle moleculestemsynaptotagmin Isyntaxintooltransmission processvesicle-associated membrane protein
项目摘要
Project Summary/Abstract
A key step in neurotransmission is the fusion of the synaptic vesicle (SV) membrane with neuronal
plasma membrane (PM), to release neurotransmitters into the synaptic cleft where they bind and activate post
synaptic receptors. A protein complex called SNARE is believed to play a central role since its assembly can
generate enough energy to drive fusion. The current hypothesis that describes SNARE-mediated fusion is
referred to as 'SNARE zippering': a v-SNARE protein on SV binds to a t-SNARE protein heterodimer on PM in
a zipper-like fashion, forming a trans-SNARE complex (i.e. v- and t-SNARE transmembrane domains are
embedded in separate membranes); the released energy eventually overcomes the repulsive forces between
SV and PM and pulls the two membranes together, where trans-SNARE complexes transform into cis-SNARE
complexes (i.e. v- and t-SNAREs locate on a single membrane). At present most of what is known concerning
neuronal SNARE structure and dynamics stems from analysis of cis-SNARE, but the 'real hero' trans-SNARE
that provides the driving force for membrane fusion remains elusive. A main technical challenge here is to
capture partially assembled trans-SNARE complexes that form during the fast process of exocytosis (<1 ms).
In this proposal, we offer a solution by combining the power of nanoscale programmability from DNA
nanotechnology and the ability of restricting fusion pore expansion by using nanodisc (ND). A V-shaped DNA
origami structure is used for hosting two binding moieties; one moiety comprises v-SNAREs that have been
reconstituted in NDs, while the other comprises NDs with the cognate t-SNAREs. Our platform significantly
improved previous methods in revealing true information of neuronal trans-SNARE assembly by studying: (1)
full-length SNARE proteins rather than truncations or mutations, as the disruption of zippering solely arises
from distance control; (2) SNAREs in lipid bilayers, which represent their native environment.
In Specific Aim 1, a set of partially-assembled neuronal trans-SNARE complexes residing in bilayers are
produced, which mimic the progressive quaternary core in synaptic fusion machinery. Then various clostridial
neurotoxins (CNTs) are added into the complex set, and the relation between SNARE assembly completeness
and CNTs' proteolytic activity could be systematically examined. In Specific Aim 2, a modified V-origami
functions as a force spectrometer to investigate the energy landscape of neuronal trans-SNARE assembly in
the context of bilayers. Importantly, we will examine the effect of disease-associated SNARE mutations on
trans-complex assembly energy, which would help elucidate their impact on psychiatric disorders.
In brief, we strive to build a novel and powerful platform to revisit one of the central yet elusive machinery
in neuroscience: the neuronal trans-SNARE complex. Important knowledge concerning widely-used CNTs and
disease-relevant mutants are expected to acquire in this study, potentially benefiting both basic research and
clinical practices. Such DNA-based technology may also be used to study other membrane proteins in vitro.
项目总结/摘要
神经传递的一个关键步骤是突触囊泡(SV)膜与神经元的融合。
质膜(PM),以释放神经递质进入突触间隙,在那里它们结合并激活后
突触受体一种名为SNARE的蛋白质复合物被认为起着核心作用,因为它的组装可以
产生足够的能量来驱动核聚变目前描述SNARE介导融合的假说是
称为“SNARE拉链”:SV上的v-SNARE蛋白与PM上的t-SNARE蛋白异二聚体结合,
拉链样方式,形成反式SNARE复合物(即,
嵌入在单独的膜中);释放的能量最终克服了
SV和PM并将两个膜拉在一起,在那里反式SNARE复合物转化为顺式SNARE
复合物(即v-和t-SNARE位于单个膜上)。目前,大多数人都知道,
神经元SNARE的结构和动力学源于顺式SNARE的分析,但“真实的英雄”反式SNARE
为膜融合提供驱动力的机制仍然是难以捉摸的。这里的主要技术挑战是
捕获在胞吐作用的快速过程(<1 ms)期间形成的部分组装的反式SNARE复合物。
在这个建议中,我们提供了一个解决方案,结合DNA的纳米级可编程能力,
纳米技术和通过使用纳米盘(ND)限制熔融孔膨胀的能力。V形DNA
折纸结构用于容纳两个结合部分;一个部分包含已被
在ND中重构,而另一种包含具有同源t-SNARE的ND。我们的平台显著
改进了以往揭示神经元trans-SNARE组装真实信息的方法,通过研究:(1)
全长SNARE蛋白,而不是截短或突变,因为拉链的破坏只会产生
(2)脂质双层中的SNARE,这代表了它们的天然环境。
在具体目标1中,一组位于双层中的部分组装的神经元反式SNARE复合物被
产生,其模仿突触融合机制中的渐进式四元核心。然后各种梭菌
神经毒素(CNT)被添加到复杂的集合,和SNARE组装完整性之间的关系
并可系统地检测碳纳米管的蛋白水解活性。在《特定目标2》中,一种改良的V形折纸
作为一个力谱仪的功能,以调查神经元trans-SNARE组装的能量景观,
双层的背景。重要的是,我们将研究疾病相关SNARE突变对
这将有助于阐明它们对精神疾病的影响。
简而言之,我们努力建立一个新颖而强大的平台,重新审视一个核心但难以捉摸的机制,
神经元反式陷阱复合物。关于广泛使用的碳纳米管的重要知识,
疾病相关的突变体预计将在这项研究中获得,可能有利于基础研究和
临床实践。这种基于DNA的技术也可用于在体外研究其他膜蛋白。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhao Zhang其他文献
Zhao Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhao Zhang', 18)}}的其他基金
The Role of Gm4951 in Nonalcoholic Fatty Liver Disease
Gm4951 在非酒精性脂肪肝中的作用
- 批准号:
10544345 - 财政年份:2022
- 资助金额:
$ 41.43万 - 项目类别:
The Role of Gm4951 in Nonalcoholic Fatty Liver Disease
Gm4951 在非酒精性脂肪肝中的作用
- 批准号:
10339213 - 财政年份:2022
- 资助金额:
$ 41.43万 - 项目类别:
Regulation, function, and impact of developmental retrotransposon activation
发育逆转录转座子激活的调节、功能和影响
- 批准号:
10177576 - 财政年份:2021
- 资助金额:
$ 41.43万 - 项目类别:
Regulation, function, and impact of developmental retrotransposon activation
发育逆转录转座子激活的调节、功能和影响
- 批准号:
10549855 - 财政年份:2021
- 资助金额:
$ 41.43万 - 项目类别:
Regulation, function, and impact of developmental retrotransposon activation
发育逆转录转座子激活的调节、功能和影响
- 批准号:
10373055 - 财政年份:2021
- 资助金额:
$ 41.43万 - 项目类别:
The Role of KBTBD2 in Lipodystrophy, Insulin Resistance, and Diabetes
KBTBD2 在脂肪营养不良、胰岛素抵抗和糖尿病中的作用
- 批准号:
10468738 - 财政年份:2020
- 资助金额:
$ 41.43万 - 项目类别:
The Role of KBTBD2 in Lipodystrophy, Insulin Resistance, and Diabetes
KBTBD2 在脂肪营养不良、胰岛素抵抗和糖尿病中的作用
- 批准号:
10213315 - 财政年份:2020
- 资助金额:
$ 41.43万 - 项目类别:
Somatic transposition-mediated genome variegation during development, disease and aging conditions
发育、疾病和衰老条件下体细胞转座介导的基因组变异
- 批准号:
9001476 - 财政年份:2015
- 资助金额:
$ 41.43万 - 项目类别:
Somatic transposition-mediated genome variegation during development, disease and aging conditions
发育、疾病和衰老条件下体细胞转座介导的基因组变异
- 批准号:
10043992 - 财政年份:2015
- 资助金额:
$ 41.43万 - 项目类别:
Somatic transposition-mediated genome variegation during development, disease and aging conditions
发育、疾病和衰老条件下体细胞转座介导的基因组变异
- 批准号:
9349391 - 财政年份:2015
- 资助金额:
$ 41.43万 - 项目类别:
相似海外基金
HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
- 批准号:
2318404 - 财政年份:2023
- 资助金额:
$ 41.43万 - 项目类别:
Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
- 批准号:
10552484 - 财政年份:2023
- 资助金额:
$ 41.43万 - 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 41.43万 - 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
- 批准号:
480914 - 财政年份:2023
- 资助金额:
$ 41.43万 - 项目类别:
Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
- 批准号:
FL210100071 - 财政年份:2022
- 资助金额:
$ 41.43万 - 项目类别:
Australian Laureate Fellowships
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
- 批准号:
10517004 - 财政年份:2022
- 资助金额:
$ 41.43万 - 项目类别:
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
- 批准号:
22K02974 - 财政年份:2022
- 资助金额:
$ 41.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
- 批准号:
10431468 - 财政年份:2022
- 资助金额:
$ 41.43万 - 项目类别: