Deep Learning Methods to Integrate Biological Information for Analysis of Single-cell RNAseq Data
整合生物信息进行单细胞 RNAseq 数据分析的深度学习方法
基本信息
- 批准号:10291567
- 负责人:
- 金额:$ 45.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArchitectureAreaBinomial ModelBioinformaticsBiologicalCellsChargeCluster AnalysisCollaborationsComplexComputersDataData AnalysesData SetDetectionDevelopmentDimensionsDocumentationDropoutEuclidean SpaceEventFrequenciesGoalsGrantGraphHair follicle structureHumanInvestigationKnowledgeLeadMapsMeasurementMethodologyMethodsModelingNatural regenerationPaneth CellsPennsylvaniaPerformancePhenotypeRegulationResearch PersonnelResearch Project GrantsScienceScientistStudentsSupervisionTechnologyTranscriptTriplet Multiple BirthUniversitiesVisualization softwareWorkautoencoderbasebiological systemscareercell typecomputer programcomputerized toolsdata visualizationdeep learningdesignexperimental studyflexibilitygenomic dataimprovedinsightinterestlearning strategyloss of functionmachine learning methodmedical schoolsnovelprogramsrecruitsingle cell analysissingle-cell RNA sequencingtranscriptometranscriptome sequencingundergraduate student
项目摘要
Project Summary
The broad long-term objective of the project concerns the development of novel machine
learning methods and computational tools for modeling genomic data motivated by important
biological questions and experiments. The analysis of single-cell RNAseq (scRNAseq) data
presents substantial computational and bioinformatics challenges. The specific aim of the
project is to develop novel model-based deep learning methods with prior biological information
considered for modelling scRNAseq data. These problems are all motivated by the PI’s close
collaborations with biomedical investigators. The proposed approaches are designed to
integrate biological information for improving both analytical performance and biological
interpretability. The methods hinge on novel integration of biological insights and deep learning
methods for analysis of the noisy, sparse, and over-dispersed scRNAseq data, including zero-
inflated negative binominal model, autoencoder, deep embedding, hyperbolic embedding, and
reversed graph embedding. The new methods can be applied to two important biological
problems using the scRNAseq technologies: cell type identification and discovery via clustering
analysis and cell developments via trajectory inference. They will facilitate effective analyses of
the increasingly important scRNAseq data sets and contribute to the important on-going studies
that the PI is currently collaborating on, Paneth cell regulation and regeneration of human hair
follicles. The project will develop practical and feasible computer programs in order to
implement the proposed methods, and to evaluate the performance of these methods through
real applications. The work proposed here will contribute deep learning methods to modeling
scRNAseq data and to studying complex phenotypes and biological systems and offer insights
into each of the biological areas represented by the various data sets. All programs developed
under this grant and detailed documentation will be made available free-of-charge to interested
researchers. Undergraduates researchers from diverse backgrounds will be recruited as an
integral part in the project for implementing most critical parts of the proposed aims. The
research project will stimulate the interests of students so that they can consider a career in the
biomedical sciences.
项目摘要
该项目的广泛的长期目标涉及新机器的开发
用于对基因组数据建模的学习方法和计算工具,
生物问题和实验。单细胞RNAseq(scRNAseq)数据的分析
提出了大量的计算和生物信息学挑战。的具体目标
该项目旨在开发基于先验生物信息的新型模型深度学习方法
考虑用于对scRNAseq数据建模。这些问题都是由PI的关闭动机
与生物医学研究人员的合作。建议的方法旨在
用于改进分析性能和生物学性能
可解释性这些方法取决于生物学见解和深度学习的新整合
用于分析噪声、稀疏和过度分散的scRNAseq数据的方法,包括零-
膨胀负二项模型,自动编码器,深度嵌入,双曲线嵌入,
反向图嵌入这些新方法可以应用于两种重要的生物学
使用scRNAseq技术的问题:通过聚类进行细胞类型识别和发现
通过轨迹推断进行分析和细胞发育。它们将有助于有效分析
越来越重要的scRNAseq数据集,并有助于重要的正在进行的研究
PI目前正在合作的项目,潘氏细胞调节和人类毛发再生
毛囊该项目将开发实际可行的计算机程序,以便
实施所提出的方法,并评估这些方法的性能,通过
真实的应用。这里提出的工作将为建模贡献深度学习方法
scRNAseq数据和研究复杂的表型和生物系统,并提供见解
到由各种数据集表示的每个生物区域中。开发的所有程序
根据这项赠款和详细的文件将免费提供给感兴趣的
研究人员来自不同背景的本科生研究人员将被招募为
项目的组成部分,以执行拟议目标的最关键部分。的
研究项目将激发学生的兴趣,使他们能够考虑在
生物医学科学
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clustering of single-cell multi-omics data with a multimodal deep learning method.
- DOI:10.1038/s41467-022-35031-9
- 发表时间:2022-12-13
- 期刊:
- 影响因子:16.6
- 作者:Lin X;Tian T;Wei Z;Hakonarson H
- 通讯作者:Hakonarson H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhi Wei其他文献
Zhi Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Practical Study on Disaster Countermeasure Architecture Model by Sustainable Design in Asian Flood Area
亚洲洪泛区可持续设计防灾建筑模型实践研究
- 批准号:
17K00727 - 财政年份:2017
- 资助金额:
$ 45.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional architecture of a face processing area in the common marmoset
普通狨猴面部处理区域的功能架构
- 批准号:
9764503 - 财政年份:2016
- 资助金额:
$ 45.08万 - 项目类别:
SBIR Phase II: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第二阶段:用于基于闪存的存储的面积和能源效率高、无错误层的低密度奇偶校验码解码器架构
- 批准号:
1632562 - 财政年份:2016
- 资助金额:
$ 45.08万 - 项目类别:
Standard Grant
Heating and airconditioning by hypocausts in residential and representative architecture in Rome and Latium studies of a phenomenon of luxury in a favoured climatic area of the Roman Empire on the basis of selected examples.
罗马和拉齐奥的住宅和代表性建筑中的火烧供暖和空调根据选定的例子,研究了罗马帝国有利的气候地区的奢华现象。
- 批准号:
317469425 - 财政年份:2016
- 资助金额:
$ 45.08万 - 项目类别:
Research Grants
SBIR Phase I: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第一阶段:用于基于闪存的存储的面积和能源效率高、无错误层低密度奇偶校验码解码器架构
- 批准号:
1520137 - 财政年份:2015
- 资助金额:
$ 45.08万 - 项目类别:
Standard Grant
A Study on The Spatial Setting and The Inhavitant's of The Flood Prevention Architecture in The Flood Area
洪泛区防洪建筑空间设置及居民生活研究
- 批准号:
26420620 - 财政年份:2014
- 资助金额:
$ 45.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2011
- 资助金额:
$ 45.08万 - 项目类别:
Discovery Grants Program - Individual
A FUNDAMENTAL STUDY ON UTILIZATION OF THE POST-WAR ARCHITECTURE AS URBAN REGENERATION METHOD, A case of the central area of Osaka city
战后建筑作为城市更新方法的基础研究——以大阪市中心区为例
- 批准号:
22760469 - 财政年份:2010
- 资助金额:
$ 45.08万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2010
- 资助金额:
$ 45.08万 - 项目类别:
Discovery Grants Program - Individual
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2009
- 资助金额:
$ 45.08万 - 项目类别:
Discovery Grants Program - Individual