De Novo Design of Minibinder Antagonists for COVID-19 and Future Pandemics
针对 COVID-19 和未来大流行病的 Minibinder 拮抗剂的从头设计
基本信息
- 批准号:10296596
- 负责人:
- 金额:$ 72.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-02 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVACE2AcuteAdult Respiratory Distress SyndromeAerosolsAffinityAnimalsAnti-Inflammatory AgentsAntibodiesAntiviral AgentsAvidityBindingBinding SitesCOVID-19COVID-19 mortalityCOVID-19 pandemicCOVID-19 therapeuticsCOVID-19 treatmentCapillary Leak SyndromeCellsComputing MethodologiesCoronavirusCoupledCytokine ReceptorsDevelopmentDiseaseDisease OutbreaksDrug CompoundingDrug KineticsEndothelial CellsEpithelial CellsEscherichia coliFutureGeneticGlycoproteinsGoalsHigh Performance ComputingHumanInfectionInflammatoryInflammatory ResponseInfluenza HemagglutininInterleukin 2 ReceptorInterleukin-1 betaInterleukin-2Interleukin-6InterleukinsIntravenousK-18 conjugateLeadLifeMesocricetus auratusMethodsMissionModelingMonoclonal AntibodiesMusNebulizerOrgan failureOutcomePeptidesPharmaceutical PreparationsPhase I Clinical TrialsProtein EngineeringProteinsProtocols documentationPublic HealthResearchRodent ModelRouteSARS-CoV-2 infectionSARS-CoV-2 spike proteinSafetySepsisSignal TransductionSocial BehaviorSpecificitySystemTherapeuticUnited States National Institutes of HealthVaccinesViralVirusVirus DiseasesWorkanti-viral efficacyantibody testclinical developmentcostcytokinecytokine release syndromedesigndisabilityemerging pathogenimmunogenicityimprovedin vivoinhibitor/antagonistinnovationmimeticsneglectnovelnovel therapeuticspandemic diseaseparallel computerpathogenpathogen genomepreclinical developmentprophylacticpublic health prioritiesreceptorreceptor bindingsmall moleculesubcutaneoustherapeutic proteintherapeutically effective
项目摘要
PROJECT SUMMARY
One of the most pressing public health priorities for the COVID-19 pandemic is the development of an effective
and inexpensive therapeutic. The long-term goal of this proposal is to develop such COVID-19 treatments, as
well as the methods needed to rapidly create such molecules as soon as any new pathogen is identified. The
central hypothesis is that computational design can be used to quickly create proteins with potent antiviral activity
and others that suppress “cytokine storms” associated with advanced infection. Such countermeasures, if rapidly
developed and deployed, could save millions of lives during an outbreak until vaccines are developed. The
specific aims are to: 1) overcome current limitations in the discovery and development of protein therapeutics by
creating methods for the de novo design of hyper-stable miniproteins that bind tightly to vulnerable binding sites
on the SARS-CoV-2 Spike glycoprotein, including the receptor binding domain (RBD) of the ACE-2 cellular
receptor and the fusion peptide region; 2) Enhance the avidity of such anti-Spike minibinders through genetic
fusion of multiple copies, or through rational design of higher-order oligomers to create drug compounds that are
less prone to viral mutagenic escape; 3) Apply the same minibinder design pipeline to create cytokine receptor
antagonists of key cytokines IL-6 and IL-1β likely involved in acute respiratory distress syndrome (ADRS)
associated with COVID-19 mortality; 4) Assess the efficacy of antiviral and anti-interleukin minibinders by several
routes of delivery (intravenous, intranasal and subcutaneous) in rodent models of COVID-19 and assess
immunogenicity in order to identify those designs best suited for further preclinical development. As proof of
principle, the first anti-Spike minibinders have already been designed, were found to bind to SARS-CoV-2 Spike
RBD, and were found to neutralize live virus with activities rivaling the most potent known antibodies. This
proposal is innovative because it seeks to apply powerful emerging methods in the computational design of new
protein therapeutics to the COVID-19 pandemic. The proposal is significant because it would be the first example
of computational protein design yielding potent and entirely de novo antiviral and anti-inflammatory therapeutics
for an active pandemic. Ultimately, rapid minibinder design methods have the potential to generate treatments
for future pandemics, as well as for many other common and neglected diseases and conditions.
项目总结
新冠肺炎大流行最紧迫的公共卫生优先事项之一是制定有效的
而且便宜的治疗方法。这项提议的长期目标是开发诸如以下新冠肺炎疗法
以及一旦发现任何新的病原体就迅速创建此类分子所需的方法。这个
中心假设是,计算设计可以用来快速制造出具有强大抗病毒活性的蛋白质
以及其他抑制与晚期感染相关的“细胞因子风暴”的药物。这种反制措施,如果迅速
开发和部署,可以在暴发期间拯救数百万人的生命,直到疫苗被开发出来。这个
具体目标是:1)通过以下方式克服目前蛋白质疗法发现和发展中的限制
创造与脆弱结合位点紧密结合的超稳定微型蛋白的从头设计方法
SARS-CoV-2刺突糖蛋白,包括ACE-2细胞的受体结合域
2)通过基因工程提高抗钉钉小分子的亲和力。
多个拷贝的融合,或者通过合理设计更高阶的低聚物来产生药物化合物
不太容易发生病毒突变逃逸;3)应用相同的迷你粘合剂设计流水线来创建细胞因子受体
关键细胞因子IL-6和IL-1β拮抗剂可能参与急性呼吸窘迫综合征(ADRS)
与新冠肺炎死亡率有关;4)通过以下几项评估抗病毒和抗白细胞介素型迷你粘合剂的疗效
新冠肺炎啮齿动物模型的静脉、鼻腔和皮下给药途径及评价
免疫原性,以确定最适合进一步临床前开发的设计。作为证明
原理上,第一个抗钉病毒的小粘合剂已经设计出来,被发现可以与SARS-CoV-2钉结合
RBD,并被发现中和活病毒的活性与最有效的已知抗体相媲美。这
提案具有创新性,因为它寻求在新的计算设计中应用强大的新兴方法
新冠肺炎大流行的蛋白质疗法。这项提议意义重大,因为它将是第一个例子
计算蛋白质设计产生有效的和完全从头开始的抗病毒和抗炎疗法
应对一场活跃的大流行。最终,快速迷你粘结剂设计方法有可能产生治疗方法
对于未来的大流行,以及许多其他常见和被忽视的疾病和情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID BAKER其他文献
DAVID BAKER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID BAKER', 18)}}的其他基金
De Novo Design of Minibinder Antagonists for COVID-19 and Future Pandemics
针对 COVID-19 和未来大流行病的 Minibinder 拮抗剂的从头设计
- 批准号:
10460648 - 财政年份:2021
- 资助金额:
$ 72.36万 - 项目类别:
De Novo Design of Minibinder Antagonists for COVID-19 and Future Pandemics
针对 COVID-19 和未来大流行病的 Minibinder 拮抗剂的从头设计
- 批准号:
10672446 - 财政年份:2021
- 资助金额:
$ 72.36万 - 项目类别:
Project 4: Novel reagent development to enable molecular characterization
项目 4:开发新型试剂以实现分子表征
- 批准号:
10359195 - 财政年份:2020
- 资助金额:
$ 72.36万 - 项目类别:
Project 4: Novel reagent development to enable molecular characterization
项目 4:开发新型试剂以实现分子表征
- 批准号:
10573273 - 财政年份:2020
- 资助金额:
$ 72.36万 - 项目类别:
Designed Vehicles for Blood Brain Barrier Traversal
设计用于穿越血脑屏障的车辆
- 批准号:
10400878 - 财政年份:2019
- 资助金额:
$ 72.36万 - 项目类别:
Designed Vehicles for Blood Brain Barrier Traversal
设计用于穿越血脑屏障的车辆
- 批准号:
10200639 - 财政年份:2019
- 资助金额:
$ 72.36万 - 项目类别:
Design of de novo interleukin mimics for targeted immunotherapy
用于靶向免疫治疗的从头白细胞介素模拟物的设计
- 批准号:
9796930 - 财政年份:2019
- 资助金额:
$ 72.36万 - 项目类别:
Designed Vehicles for Blood Brain Barrier Traversal
设计用于穿越血脑屏障的车辆
- 批准号:
10614470 - 财政年份:2019
- 资助金额:
$ 72.36万 - 项目类别:
Design of de novo interleukin mimics for targeted immunotherapy
用于靶向免疫治疗的从头白细胞介素模拟物的设计
- 批准号:
10475003 - 财政年份:2019
- 资助金额:
$ 72.36万 - 项目类别:
Designed Vehicles for Blood Brain Barrier Traversal
设计用于穿越血脑屏障的车辆
- 批准号:
9796948 - 财政年份:2019
- 资助金额:
$ 72.36万 - 项目类别:
相似国自然基金
新型蝙蝠MERS簇冠状病毒HKU5的ACE2细胞受体识别及其分子机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
铁皮石斛通过肠道 ACE2 修复 Trp/GPR142 介
导“肠-胰岛 ”轴血糖调控功能的降糖机制研
究
- 批准号:Y24H280055
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
人类ACE2变构抑制剂的成药性及其抗广谱冠状病毒感染的机制研究
- 批准号:82330111
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
CAFs来源的外泌体负性调控ACE2促进肾透明细胞癌癌栓新辅助靶向耐药的机制研究
- 批准号:82373169
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
新型蝙蝠MERS簇冠状病毒HKU5的ACE2受体识别及细胞入侵机制研究
- 批准号:32300137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于AT2/ACE2/Ang(1-7)/MAS轴调控心脏-血管-血液系统性重构演变规律研究心衰气虚血瘀证及其益气通脉活血化瘀治法生物学基础
- 批准号:82305216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体miRNAs介导细胞通讯的大豆ACE2激活肽调控血管稳态机制研究
- 批准号:32302080
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感毒清经ACE2/Ang(1-7)/MasR信号通路抑制PM2.5诱导慢性气道炎症的机制:聚焦肺泡巨噬细胞极化与“胞葬”的表型串扰
- 批准号:82305171
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
刺参自溶引发机制中ACE2调控靶点的调控网络研究
- 批准号:32372399
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Spike变异对新冠病毒抗原性及ACE2种属嗜性的影响研究
- 批准号:82272305
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
新型コロナウイルス感染阻害能を有する抗ACE2抗体の阻害機構に関する構造基盤解明
阐明具有抑制新型冠状病毒感染能力的抗ACE2抗体抑制机制的结构基础
- 批准号:
24K09338 - 财政年份:2024
- 资助金额:
$ 72.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ACE2のユビキチン化を介したコロナウイルス感染機構の解明と創薬への挑戦
通过ACE2泛素化阐明冠状病毒感染机制和药物发现的挑战
- 批准号:
22KJ2499 - 财政年份:2023
- 资助金额:
$ 72.36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
ACE2阻害薬およびERK経路阻害薬による慢性腎炎進展抑制効果の検証
ACE2抑制剂和ERK通路抑制剂抑制慢性肾炎进展的效果验证
- 批准号:
23K14982 - 财政年份:2023
- 资助金额:
$ 72.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Large-scale compatibility assessments between ACE2 proteins and diverse sarbecovirus spikes
ACE2 蛋白和多种 sarbecovirus 尖峰之间的大规模兼容性评估
- 批准号:
10722852 - 财政年份:2023
- 资助金额:
$ 72.36万 - 项目类别:
一次線毛とコロナウイルス感染におけるACE2の役割の解明
阐明 ACE2 在原发菌毛和冠状病毒感染中的作用
- 批准号:
22KF0004 - 财政年份:2023
- 资助金额:
$ 72.36万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The regulatory roles of ACE2 and its interaction with Nrf2 in arsenic-induced endothelial dysfunction in experimental and epidemiological studies
实验和流行病学研究中 ACE2 的调节作用及其与 Nrf2 的相互作用在砷诱导的内皮功能障碍中的作用
- 批准号:
23K16310 - 财政年份:2023
- 资助金额:
$ 72.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Role of ACE2 in the mechanism of intestinal regeneration
ACE2在肠道再生机制中的作用
- 批准号:
23K15078 - 财政年份:2023
- 资助金额:
$ 72.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research and development of a novel pediatric anti-obesity medicine via ACE2 activation in DIZE
通过 DIZE 中 ACE2 激活研发新型儿科抗肥胖药物
- 批准号:
23K15417 - 财政年份:2023
- 资助金额:
$ 72.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Lung delivery of novel ACE2 variants for COVID-19
针对 COVID-19 的新型 ACE2 变体的肺部输送
- 批准号:
10483042 - 财政年份:2022
- 资助金额:
$ 72.36万 - 项目类别:
ACE2 on gut barrier dysfunction and BRB disruption
ACE2 对肠道屏障功能障碍和 BRB 破坏的影响
- 批准号:
10535485 - 财政年份:2022
- 资助金额:
$ 72.36万 - 项目类别:














{{item.name}}会员




