Integrating systems immunology with immunometabolism and cancer immunity
将系统免疫学与免疫代谢和癌症免疫相结合
基本信息
- 批准号:10299800
- 负责人:
- 金额:$ 73.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaBiological ProcessCRISPR screenCellsCellular Metabolic ProcessDendritic CellsDevelopmentFRAP1 geneFoundationsGoalsHeterogeneityHomeostasisImmuneImmune signalingImmunityImmunologyImmunooncologyInflammationLinkMalignant Childhood NeoplasmMalignant NeoplasmsMetabolicMetabolic ControlMetabolic PathwayMetabolismNutrientPathway interactionsPositioning AttributePrincipal InvestigatorProcessProgram DescriptionProteomicsResearchSignal TransductionSystemSystems BiologyT-LymphocyteT-Lymphocyte SubsetsTestingTherapeuticTissuesTranslationsTumor ImmunityWorkadaptive immune responsebench to bedsidecancer immunotherapycancer therapyclinical developmentclinical translationexperiencehuman diseaseimmune functionimprovedin vivoinnovationinsightinterdisciplinary approachnovelpre-clinicalprogramsrapid growthrefractory cancerstemnesstumor microenvironment
项目摘要
Program Description/Abstract
Metabolism is the core process underlying essentially all biological functions. The goal of our research program
is to discover the mechanisms linking the metabolic state of immune cells with tissue homeostasis and
antitumor immunity, and to use these insights for development of better cancer treatments. We approach these
questions by integrating hypothesis-driven and systems immunology approaches, and our work has produced
innovation in three main areas. First, we revealed the principle of metabolic reprogramming for T cell fate, state
and tolerance. Our earlier findings in metabolic control of T cell fate and state, including T cell subset-specific
requirement of Warburg metabolism and mTOR signaling, contributed to the foundation and rapid growth of the
immunometabolism field. More recently, we identified metabolic heterogeneity in vivo that underlies T cell fate
between stemness and terminal differentiation in tumor microenvironment and inflammation, and the cycle of
metabolic quiescence and quiescence exit in immune development and function. Second, we defined
mechanisms of nutrient and immune signaling. We identified how nutrient and autophagic signals serve as
potent regulators of cellular metabolism, and how dendritic cell-derived immune and metabolic signals are
integrated by T cells. Third, we combined the traditional hypothesis-driven or ‘reductionist’ approach with
systems biology principles, including in-house development of network algorithm NetBID, pooled in vivo
CRISPR screening and systems proteomics, which led to the identification of new concepts and ‘hidden
drivers’ in immunometabolism that cannot be surmised from simpler systems. More importantly, these
approaches enabled the discovery of novel immuno-oncology targets with a clear path to clinical translation
into innovative therapeutics for pediatric cancers. Our systems immunology strategies provide functionally-
relevant discovery platforms to support future research in metabolic control of immunity and cancer.
Specifically, the future research program will address three fundamental questions in immunometabolism and
antitumor immunity, by testing the central hypothesis that immunometabolic pathways are inextricably
connected to the mechanisms of adaptive immune responses and antitumor immunity; by understanding these
connections, we gain new targets for the treatment of cancer: 1) How are nutrient signals sensed and
integrated by immune cells? 2) How can immunometabolism be rewired to improve antitumor immunity? 3)
Can we break metabolic barriers to cancer immunity and therapy, especially in therapeutically-resistant
cancers? We will focus on T cells, the cornerstone for cancer immunotherapy, to gain in-depth insights, but we
anticipate the findings can be tested and extended into other immune cells. Our experience in the application
of multidisciplinary approaches, combined with our new development and use of novel preclinical and human
disease systems for cancer immunotherapy, makes us uniquely positioned to produce fundamental discoveries
in immunometabolism and clinical translation for cancer treatments by reprogramming metabolic pathways.
项目描述/摘要
代谢是基本上所有生物功能的核心过程。我们研究项目的目标
是发现免疫细胞的代谢状态与组织稳态的联系机制,
抗肿瘤免疫,并利用这些见解开发更好的癌症治疗。我们接近这些
通过整合假设驱动和系统免疫学方法,我们的工作产生了
三大领域的创新。首先,我们揭示了T细胞命运的代谢重编程原理,
和宽容。我们在T细胞命运和状态的代谢控制方面的早期发现,包括T细胞亚群特异性
由于需要瓦尔堡代谢和mTOR信号传导,导致了细胞的基础和快速生长。
免疫代谢领域最近,我们发现体内代谢异质性是T细胞命运的基础,
肿瘤微环境和炎症中的干细胞和终末分化之间的关系,以及
在免疫发育和功能中存在代谢静止期和静止期。第二,我们定义
营养和免疫信号的机制。我们确定了营养和自噬信号是如何作为
细胞代谢的有效调节剂,以及树突状细胞衍生的免疫和代谢信号是如何
由T细胞整合。第三,我们将传统的假设驱动或“还原论”方法与
系统生物学原理,包括网络算法NetBID的内部开发,体内汇集
CRISPR筛选和系统蛋白质组学,这导致了新概念的识别和“隐藏”
免疫代谢中的驱动因素,不能从简单的系统推测。更重要的是这些
这些方法使得能够发现新的免疫肿瘤学靶点,并为临床转化提供了明确的途径
儿童癌症的创新疗法。我们的系统免疫学策略提供功能性-
相关的发现平台,以支持免疫和癌症的代谢控制的未来研究。
具体来说,未来的研究计划将解决免疫代谢中的三个基本问题,
抗肿瘤免疫,通过测试的中心假设,免疫代谢途径是不可分割的
与适应性免疫反应和抗肿瘤免疫机制有关;通过了解这些
联系,我们获得了治疗癌症的新目标:1)如何感知营养信号,
由免疫细胞整合而成2)免疫代谢如何重新连接以提高抗肿瘤免疫力?第三章
我们能否打破癌症免疫和治疗的代谢障碍,特别是在治疗耐药的
癌症吗我们将专注于T细胞,癌症免疫治疗的基石,以获得深入的见解,但我们
预计这些发现可以被测试并扩展到其他免疫细胞。我们的应用经验
多学科的方法,结合我们的新开发和使用新的临床前和人类
癌症免疫治疗的疾病系统,使我们处于独特的地位,
在免疫代谢和临床翻译癌症治疗通过重新编程代谢途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongbo Chi其他文献
Hongbo Chi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongbo Chi', 18)}}的其他基金
Enabling immunotherapy for high-risk Group 3 medulloblastoma via systems immunology
通过系统免疫学对高危 3 组髓母细胞瘤进行免疫治疗
- 批准号:
10714138 - 财政年份:2023
- 资助金额:
$ 73.03万 - 项目类别:
Integrating systems immunology with immunometabolism and cancer immunity
将系统免疫学与免疫代谢和癌症免疫相结合
- 批准号:
10442703 - 财政年份:2021
- 资助金额:
$ 73.03万 - 项目类别:
2020 Immunometabolism in Health and Disease GRC
2020 健康与疾病中的免疫代谢 GRC
- 批准号:
9912281 - 财政年份:2021
- 资助金额:
$ 73.03万 - 项目类别:
Integrating systems immunology with immunometabolism and cancer immunity
将系统免疫学与免疫代谢和癌症免疫相结合
- 批准号:
10657475 - 财政年份:2021
- 资助金额:
$ 73.03万 - 项目类别:
Bidirectional metabolic signaling in follicular helper T cell differentiation
滤泡辅助 T 细胞分化中的双向代谢信号
- 批准号:
10687027 - 财政年份:2019
- 资助金额:
$ 73.03万 - 项目类别:
Bidirectional metabolic signaling in follicular helper T cell differentiation
滤泡辅助 T 细胞分化中的双向代谢信号
- 批准号:
10020901 - 财政年份:2019
- 资助金额:
$ 73.03万 - 项目类别:
Bidirectional metabolic signaling in follicular helper T cell differentiation
滤泡辅助 T 细胞分化中的双向代谢信号
- 批准号:
10466976 - 财政年份:2019
- 资助金额:
$ 73.03万 - 项目类别:
Bidirectional metabolic signaling in follicular helper T cell differentiation
滤泡辅助 T 细胞分化中的双向代谢信号
- 批准号:
10231172 - 财政年份:2019
- 资助金额:
$ 73.03万 - 项目类别:
Bidirectional metabolic signaling in follicular helper T cell differentiation
滤泡辅助 T 细胞分化中的双向代谢信号
- 批准号:
9917280 - 财政年份:2019
- 资助金额:
$ 73.03万 - 项目类别:
Regulation of TH17 plasticity and stemness by mTORC1
mTORC1 对 TH17 可塑性和干性的调节
- 批准号:
10208040 - 财政年份:2018
- 资助金额:
$ 73.03万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 73.03万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 73.03万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 73.03万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 73.03万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 73.03万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 73.03万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 73.03万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 73.03万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 73.03万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 73.03万 - 项目类别:
Standard Grant