Integrating systems immunology with immunometabolism and cancer immunity
将系统免疫学与免疫代谢和癌症免疫相结合
基本信息
- 批准号:10657475
- 负责人:
- 金额:$ 105.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAreaBiological ProcessCRISPR screenCellsCellular Metabolic ProcessDendritic CellsDevelopmentFRAP1 geneFoundationsGoalsHeterogeneityHomeostasisImmuneImmune signalingImmunityImmunologyImmunooncologyInflammationLinkMalignant Childhood NeoplasmMalignant NeoplasmsMetabolicMetabolic ControlMetabolic PathwayMetabolismNutrientPathway interactionsPositioning AttributePrincipal InvestigatorProcessProgram DescriptionProteomicsResearchSignal TransductionSystemSystems BiologyT-LymphocyteT-Lymphocyte SubsetsTestingTherapeuticTissuesTumor ImmunityWorkadaptive immune responsebench-to-bedside translationcancer immunotherapycancer therapyclinical developmentclinical translationexperiencehuman diseaseimmune functionimprovedin vivoinnovationinsightinterdisciplinary approachnovelpre-clinicalprogramsrapid growthrefractory cancerstemnesstumor microenvironment
项目摘要
Program Description/Abstract
Metabolism is the core process underlying essentially all biological functions. The goal of our research program
is to discover the mechanisms linking the metabolic state of immune cells with tissue homeostasis and
antitumor immunity, and to use these insights for development of better cancer treatments. We approach these
questions by integrating hypothesis-driven and systems immunology approaches, and our work has produced
innovation in three main areas. First, we revealed the principle of metabolic reprogramming for T cell fate, state
and tolerance. Our earlier findings in metabolic control of T cell fate and state, including T cell subset-specific
requirement of Warburg metabolism and mTOR signaling, contributed to the foundation and rapid growth of the
immunometabolism field. More recently, we identified metabolic heterogeneity in vivo that underlies T cell fate
between stemness and terminal differentiation in tumor microenvironment and inflammation, and the cycle of
metabolic quiescence and quiescence exit in immune development and function. Second, we defined
mechanisms of nutrient and immune signaling. We identified how nutrient and autophagic signals serve as
potent regulators of cellular metabolism, and how dendritic cell-derived immune and metabolic signals are
integrated by T cells. Third, we combined the traditional hypothesis-driven or ‘reductionist’ approach with
systems biology principles, including in-house development of network algorithm NetBID, pooled in vivo
CRISPR screening and systems proteomics, which led to the identification of new concepts and ‘hidden
drivers’ in immunometabolism that cannot be surmised from simpler systems. More importantly, these
approaches enabled the discovery of novel immuno-oncology targets with a clear path to clinical translation
into innovative therapeutics for pediatric cancers. Our systems immunology strategies provide functionally-
relevant discovery platforms to support future research in metabolic control of immunity and cancer.
Specifically, the future research program will address three fundamental questions in immunometabolism and
antitumor immunity, by testing the central hypothesis that immunometabolic pathways are inextricably
connected to the mechanisms of adaptive immune responses and antitumor immunity; by understanding these
connections, we gain new targets for the treatment of cancer: 1) How are nutrient signals sensed and
integrated by immune cells? 2) How can immunometabolism be rewired to improve antitumor immunity? 3)
Can we break metabolic barriers to cancer immunity and therapy, especially in therapeutically-resistant
cancers? We will focus on T cells, the cornerstone for cancer immunotherapy, to gain in-depth insights, but we
anticipate the findings can be tested and extended into other immune cells. Our experience in the application
of multidisciplinary approaches, combined with our new development and use of novel preclinical and human
disease systems for cancer immunotherapy, makes us uniquely positioned to produce fundamental discoveries
in immunometabolism and clinical translation for cancer treatments by reprogramming metabolic pathways.
程序描述/摘要
新陈代谢基本上是所有生物功能的核心过程。我们研究计划的目标是
是发现将免疫细胞的代谢状态与组织动态平衡联系起来的机制
抗肿瘤免疫,并将这些见解用于开发更好的癌症治疗方法。我们的方法是
通过整合假设驱动和系统免疫学的方法来提出问题,我们的工作已经产生
三个主要领域的创新。首先,我们揭示了T细胞命运、状态的代谢重新编程的原理
和宽容。我们早期在代谢控制T细胞命运和状态方面的发现,包括T细胞亚群特异性
对Warburg新陈代谢和mTOR信号的需求,有助于建立和快速生长
免疫代谢领域。最近,我们在体内发现了决定T细胞命运的代谢异质性
肿瘤微环境中的干性和终末分化与炎症及细胞周期的关系
在免疫发育和功能过程中存在代谢停滞和停滞。第二,我们定义了
营养和免疫信号的机制。我们确定了营养和自噬信号是如何发挥作用的
细胞代谢的有效调节者,以及树突状细胞衍生的免疫和代谢信号是如何
由T细胞整合。第三,我们结合了传统的假说驱动或还原论者的方法
系统生物学原理,包括内部开发的网络算法NetBID,在体内汇集
CRISPR筛选和系统蛋白质组学,这导致了新概念的识别和隐藏
驾驶员的免疫新陈代谢不能从简单的系统中推测出来。更重要的是,这些
方法使新的免疫肿瘤学靶点的发现具有明确的临床翻译途径
儿童癌症的创新疗法。我们的系统免疫学策略在功能上提供-
相关发现平台,支持未来免疫和癌症代谢控制的研究。
具体地说,未来的研究计划将解决免疫代谢和
抗肿瘤免疫,通过测试免疫代谢途径难以解决的中心假设
与适应性免疫反应和抗肿瘤免疫的机制有关;通过理解这些
联系,我们获得了治疗癌症的新靶点:1)营养信号是如何被感知的,以及
被免疫细胞整合?2)免疫代谢如何重新连接以提高抗肿瘤免疫力?3)
我们能否打破癌症免疫和治疗的代谢障碍,特别是在治疗耐药的情况下
癌症?我们将重点关注T细胞,这是癌症免疫治疗的基石,以获得深入的见解,但我们
预计这一发现可以被测试并推广到其他免疫细胞。我们在应用程序中的经验
多学科方法,结合我们对新型临床前和人类的新开发和使用
癌症免疫治疗的疾病系统,使我们在产生基础性发现方面处于独特的地位
通过重新编程代谢途径,在免疫代谢和癌症治疗的临床翻译方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongbo Chi其他文献
Hongbo Chi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongbo Chi', 18)}}的其他基金
Enabling immunotherapy for high-risk Group 3 medulloblastoma via systems immunology
通过系统免疫学对高危 3 组髓母细胞瘤进行免疫治疗
- 批准号:
10714138 - 财政年份:2023
- 资助金额:
$ 105.55万 - 项目类别:
Integrating systems immunology with immunometabolism and cancer immunity
将系统免疫学与免疫代谢和癌症免疫相结合
- 批准号:
10442703 - 财政年份:2021
- 资助金额:
$ 105.55万 - 项目类别:
Integrating systems immunology with immunometabolism and cancer immunity
将系统免疫学与免疫代谢和癌症免疫相结合
- 批准号:
10299800 - 财政年份:2021
- 资助金额:
$ 105.55万 - 项目类别:
2020 Immunometabolism in Health and Disease GRC
2020 健康与疾病中的免疫代谢 GRC
- 批准号:
9912281 - 财政年份:2021
- 资助金额:
$ 105.55万 - 项目类别:
Bidirectional metabolic signaling in follicular helper T cell differentiation
滤泡辅助 T 细胞分化中的双向代谢信号
- 批准号:
10020901 - 财政年份:2019
- 资助金额:
$ 105.55万 - 项目类别:
Bidirectional metabolic signaling in follicular helper T cell differentiation
滤泡辅助 T 细胞分化中的双向代谢信号
- 批准号:
10687027 - 财政年份:2019
- 资助金额:
$ 105.55万 - 项目类别:
Bidirectional metabolic signaling in follicular helper T cell differentiation
滤泡辅助 T 细胞分化中的双向代谢信号
- 批准号:
10466976 - 财政年份:2019
- 资助金额:
$ 105.55万 - 项目类别:
Bidirectional metabolic signaling in follicular helper T cell differentiation
滤泡辅助 T 细胞分化中的双向代谢信号
- 批准号:
10231172 - 财政年份:2019
- 资助金额:
$ 105.55万 - 项目类别:
Bidirectional metabolic signaling in follicular helper T cell differentiation
滤泡辅助 T 细胞分化中的双向代谢信号
- 批准号:
9917280 - 财政年份:2019
- 资助金额:
$ 105.55万 - 项目类别:
Regulation of TH17 plasticity and stemness by mTORC1
mTORC1 对 TH17 可塑性和干性的调节
- 批准号:
10208040 - 财政年份:2018
- 资助金额:
$ 105.55万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 105.55万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 105.55万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 105.55万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 105.55万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 105.55万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 105.55万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 105.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 105.55万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 105.55万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 105.55万 - 项目类别:
Standard Grant














{{item.name}}会员




