Evaluation and Development of Statistical Methods for Data Harmonization in Molecular Prognostication
分子预测中数据协调统计方法的评估和开发
基本信息
- 批准号:10303963
- 负责人:
- 金额:$ 49.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-03 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAlgorithmsAwarenessBenchmarkingBiographyBiologicalCharacteristicsClassificationClinicalCommunitiesDataData AnalysesData SetDerivation procedureDetectionDevelopmentDiseaseEvaluationFoundationsFundingGene ExpressionGenesGoalsHumanHybridsKnowledgeLettersMalignant Female Reproductive System NeoplasmMalignant neoplasm of ovaryMethodsMicroRNAsModelingMolecularMorphologic artifactsOutcomeOvarianPatientsPerformancePhysiciansPlayPrincipal InvestigatorPrognosisPropertyPublishingRNAReproducibilityResearchResearch DesignRoleSamplingScientistSecureSignal TransductionSmall RNAStatistical MethodsStratificationSurvival AnalysisThe Cancer Genome AtlasTranslationsUnited States National Institutes of HealthUntranslated RNAanticancer researchbasecBioPortalcancer genomicscomputerized toolsdata harmonizationdesigndifferential expressionexperiencegenomic datahigh dimensionalityinnovationinsightmultidimensional datanoveloff-label useopen sourceoptimismoutcome predictionprognosticsimulationsurvival predictiontooltranscriptomicstreatment responsevirtual
项目摘要
PROJECT SUMMARY
Survival analysis plays a foundational role in biomedical transcriptomics studies for developing reliable
predictors of patient prognosis and treatment response. While survival analysis methods are available to
address the issues of high dimensionality and signal sparsity, research is still lacking on the issue of data
artifacts associated with disparate experimental handling, which is a pivotal feature of transcriptomics data.
Published studies often deal with handling artifacts by borrowing methods that were developed for differential
expression analysis, the most popular of which is quantile normalization for microarray data and scaling
normalization for sequencing data. Despite the unfounded optimism for such ‘off-label’ uses, we found that
normalization may distort a marker’s ordering across samples and subsequently compromise the detection of
outcome-associated markers and the accuracy of outcome prediction. Thus, there is a pressing need to re-
evaluate existing methods for dealing with these data artifacts and tailor new ones specifically for the derivation
of molecular prognosticators so that it can be done accurately and reproducibly. In this proposal, we will first fill
the knowledge gap for microRNAs (a class of small RNAs that play an important regulatory role of gene
expression in humans) using data that are realistically distributed and robustly benchmarked. We will then
develop new methods for managing handling artifacts, leveraging the survival regression framework. We will
assess the performance of the new methods in comparison with existing methods using simulation tools and
demonstrate their use with an application to ovarian cancer data from The Cancer Genome Atlas. Our project
is expected to advance the knowledge needed for optimizing data harmonization in microRNA data and thus
accelerating their reproducible translations to clinically useful predictors and for paving the way to press on
these issues in RNA data and their translations.
项目摘要
生存分析在生物医学转录组学研究中起着基础性作用,
患者预后和治疗反应的预测因子。虽然生存分析方法可用于
针对高维数和信号稀疏性的问题,数据问题的研究还很缺乏
与不同的实验处理相关的伪影,这是转录组学数据的关键特征。
已发表的研究通常通过借用为微分而开发的方法来处理伪影
表达分析,其中最流行的是微阵列数据的分位数归一化和缩放
用于测序数据的标准化。尽管对这种“标签外”用途持毫无根据的乐观态度,但我们发现,
标准化可能会扭曲标记在样本中的排序,并随后损害对
结果相关标志物和结果预测的准确性。因此,迫切需要重新--
评估处理这些数据工件的现有方法,并专门为派生定制新方法
这样就可以准确地重复进行。在本提案中,我们将首先填写
microRNA(一类在基因调控中起重要作用的小RNA)的知识缺口
人类中的表达)使用真实分布和稳健基准的数据。然后我们将
开发新的方法来管理处理工件,利用生存回归框架。我们将
使用模拟工具评估新方法与现有方法相比的性能,
展示了他们的使用与应用程序的卵巢癌数据从癌症基因组图谱。我们的项目
预计将推进优化microRNA数据中的数据协调所需的知识,
加速将其可重复地转化为临床有用的预测因子,并为继续推进
RNA数据及其翻译中的这些问题。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Depth normalization of small RNA sequencing: using data and biology to select a suitable method.
- DOI:10.1093/nar/gkac064
- 发表时间:2022-06-10
- 期刊:
- 影响因子:14.9
- 作者:Dueren, Yannick;Lederer, Johannes;Qin, Li-Xuan
- 通讯作者:Qin, Li-Xuan
Making External Validation Valid for Molecular Classifier Development.
使外部验证对分子分类器的开发有效。
- DOI:10.1200/po.21.00103
- 发表时间:2021
- 期刊:
- 影响因子:4.6
- 作者:Wu,Yilin;Huang,Huei-Chung;Qin,Li-Xuan
- 通讯作者:Qin,Li-Xuan
Performance evaluation of transcriptomics data normalization for survival risk prediction.
- DOI:10.1093/bib/bbab257
- 发表时间:2021-11-05
- 期刊:
- 影响因子:9.5
- 作者:Ni A;Qin LX
- 通讯作者:Qin LX
PRECISION.array: An R Package for Benchmarking microRNA Array Data Normalization in the Context of Sample Classification.
- DOI:10.3389/fgene.2022.838679
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li-Xuan Qin其他文献
Li-Xuan Qin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li-Xuan Qin', 18)}}的其他基金
CF 2: Biostatistics and Bioinformatics Core
CF 2:生物统计学和生物信息学核心
- 批准号:
10932619 - 财政年份:2023
- 资助金额:
$ 49.63万 - 项目类别:
CF 2: Biostatistics and Bioinformatics Core
CF 2:生物统计学和生物信息学核心
- 批准号:
10247693 - 财政年份:2018
- 资助金额:
$ 49.63万 - 项目类别:
CF 2: Biostatistics and Bioinformatics Core
CF 2:生物统计学和生物信息学核心
- 批准号:
10016093 - 财政年份:2018
- 资助金额:
$ 49.63万 - 项目类别:
CF 2: Biostatistics and Bioinformatics Core
CF 2:生物统计学和生物信息学核心
- 批准号:
10468960 - 财政年份:2018
- 资助金额:
$ 49.63万 - 项目类别:
Statistical Methods for Normalizing Microarrays in Cancer Biomarker Studies
癌症生物标志物研究中微阵列标准化的统计方法
- 批准号:
8231280 - 财政年份:2011
- 资助金额:
$ 49.63万 - 项目类别:
Statistical Methods for Normalizing Microarrays in Cancer Biomarker Studies
癌症生物标志物研究中微阵列标准化的统计方法
- 批准号:
8453253 - 财政年份:2011
- 资助金额:
$ 49.63万 - 项目类别:
Statistical Methods for Normalizing Microarrays in Cancer Biomarker Studies
癌症生物标志物研究中微阵列标准化的统计方法
- 批准号:
8052541 - 财政年份:2011
- 资助金额:
$ 49.63万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 49.63万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 49.63万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 49.63万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 49.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 49.63万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 49.63万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 49.63万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 49.63万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 49.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 49.63万 - 项目类别:
Research Fellowships