BRINGING MODERN DATA SCIENCE TOOLS TO BEAR ON ENVIRONMENTAL MIXTURES

利用现代数据科学工具来研究环境混合物

基本信息

  • 批准号:
    10304211
  • 负责人:
  • 金额:
    $ 48.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-30 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Project Summary: Bringing Modern Data Science Tools to Bear on Environmental Mixtures Environmental exposures often cumulate in particular geographies, and the nature of the complex mixtures that characterize these exposures remains understudied. In addition, adverse environmental exposures often occur in communities facing multiple social stressors such as deteriorating housing, inadequate access to health care, poor schools, high unemployment, crime, and poverty – all of which may compound the effects of environmental exposures. Our central objective is to develop new data architecture, statistical, and machine learning methods to assess how exposure to environmental mixtures shapes educational outcomes in the presence or absence of social stress. We focus on air pollution mixtures, childhood lead exposure, and social stressors. We will implement our proposed work in North Carolina (NC), a state characterized by diverse environmental features, industrial activities, and airsheds typified by varying pollution emission sources and resulting pollutant mixtures. To accomplish this central objective, we will first develop, document, and disseminate methods for building space-time environmental and social data architectures. We will implement this for all of NC, incorporating data on air pollution, lead exposure risk, and social exposures from 1990-2015+ (dataset 1). Second, we will refine methods for linking unrelated datasets to build a space-time child movement and outcome data architecture (dataset 2). Third, we will connect exposures (dataset 1) and outcomes (dataset 2) data via shared geography and temporality into a single, comprehensive geodatabase. Fourth, we will implement increasingly complex methods to assess the effect of environmental mixtures in the presence or absence of social stressors on early childhood educational outcomes. We will document and disseminate all of the underlying methodological work via public website. The proposed work leverages a rich array of data resources already available to the investigators (with some significantly post-processed) and allows tracking of children across space and time. Our team brings tools from modern data science (hierarchical Bayesian methods with variable selection, spatial point process models, machine learning) to bear on the critical question of how environmental mixtures shape child outcomes directly and differentially in the presence of social stress.
项目概述:将现代数据科学工具应用于环境混合

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A spatiotemporal case-crossover model of asthma exacerbation in the City of Houston.
  • DOI:
    10.1002/sta4.357
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Schedler, Julia C.;Ensor, Katherine B.
  • 通讯作者:
    Ensor, Katherine B.
Bayesian variable selection for understanding mixtures in environmental exposures.
  • DOI:
    10.1002/sim.9099
  • 发表时间:
    2021-09-30
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Kowal DR;Bravo M;Leong H;Bui A;Griffin RJ;Ensor KB;Miranda ML
  • 通讯作者:
    Miranda ML
Disparities in air quality downscaler model uncertainty across socioeconomic and demographic indicators in North Carolina.
  • DOI:
    10.1016/j.envres.2022.113418
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Sha Zhou;R. Griffin;A. Bui;Aaron Lilienfeld;M. Bravo;Claire Osgood;M. Miranda
  • 通讯作者:
    Sha Zhou;R. Griffin;A. Bui;Aaron Lilienfeld;M. Bravo;Claire Osgood;M. Miranda
Weekly prenatal PM2.5 and NO2 exposures in preterm, early term, and full term infants: Decrements in birth weight and critical windows of susceptibility.
早产儿、早产儿和足月儿每周产前 PM2.5 和 NO2 暴露:出生体重和关键易感性窗口的减少。
  • DOI:
    10.1016/j.envres.2023.117509
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Bravo,MercedesA;Zephyr,Dominique;Fiffer,MelissaR;Miranda,MarieLynn
  • 通讯作者:
    Miranda,MarieLynn
Fast, Optimal, and Targeted Predictions using Parametrized Decision Analysis.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marie Lynn Miranda其他文献

Marie Lynn Miranda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marie Lynn Miranda', 18)}}的其他基金

BRINGING MODERN DATA SCIENCE TOOLS TO BEAR ON ENVIRONMENTAL MIXTURES
利用现代数据科学工具来研究环境混合物
  • 批准号:
    10273235
  • 财政年份:
    2020
  • 资助金额:
    $ 48.73万
  • 项目类别:
Bringing Modern Data Science Tools to Bear on Environmental Mixtures: Administrative Supplement for U3 Populations
将现代数据科学工具应用于环境混合物:U3 人群的行政补充
  • 批准号:
    9911827
  • 财政年份:
    2019
  • 资助金额:
    $ 48.73万
  • 项目类别:
Time Sensitive Award Mechanism - Using Exposure Science to Identify Populations at Risk in the Aftermath of Hurricane Harvey
时间敏感的奖励机制 - 利用暴露科学来识别飓风哈维后面临风险的人群
  • 批准号:
    10195430
  • 财政年份:
    2018
  • 资助金额:
    $ 48.73万
  • 项目类别:
Bringing Modern Data Science Tools to Bear on Environmental Mixtures
将现代数据科学工具应用于环境混合物
  • 批准号:
    9882999
  • 财政年份:
    2018
  • 资助金额:
    $ 48.73万
  • 项目类别:
African Americans and Environmental Cancers: Sharing Histories to Build Trust
非裔美国人与环境癌症:分享历史以建立信任
  • 批准号:
    8073677
  • 财政年份:
    2010
  • 资助金额:
    $ 48.73万
  • 项目类别:
African Americans and Environmental Cancers: Sharing Histories to Build Trust
非裔美国人与环境癌症:分享历史以建立信任
  • 批准号:
    7941808
  • 财政年份:
    2009
  • 资助金额:
    $ 48.73万
  • 项目类别:
African Americans and Environmental Cancers: Sharing Histories to Build Trust
非裔美国人与环境癌症:分享历史以建立信任
  • 批准号:
    7815611
  • 财政年份:
    2009
  • 资助金额:
    $ 48.73万
  • 项目类别:
DUKE CENTER FOR GEOSPATIAL MEDICINE
杜克大学地理空间医学中心
  • 批准号:
    7382226
  • 财政年份:
    2006
  • 资助金额:
    $ 48.73万
  • 项目类别:
DUKE CENTER FOR GEOSPATIAL MEDICINE
杜克大学地理空间医学中心
  • 批准号:
    7171446
  • 财政年份:
    2005
  • 资助金额:
    $ 48.73万
  • 项目类别:
Core--Research Translation
核心--研究翻译
  • 批准号:
    6900492
  • 财政年份:
    2005
  • 资助金额:
    $ 48.73万
  • 项目类别:

相似国自然基金

湍流和化学交互作用对H2-Air-H2O微混燃烧中NO生成的影响研究
  • 批准号:
    51976048
  • 批准年份:
    2019
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目

相似海外基金

How are plants responding to damage by oxidizing air pollutants?
植物如何应对氧化空气污染物造成的损害?
  • 批准号:
    DP230100296
  • 财政年份:
    2023
  • 资助金额:
    $ 48.73万
  • 项目类别:
    Discovery Projects
Unified assessment of health effects of multiple air pollutants inducing reactive oxygen species production
统一评估多种引起活性氧产生的空气污染物的健康影响
  • 批准号:
    22KJ0372
  • 财政年份:
    2023
  • 资助金额:
    $ 48.73万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Air pollutants, heat exposure, and kidney health: A longitudinal study in women in Central America
空气污染物、热暴露和肾脏健康:针对中美洲女性的纵向研究
  • 批准号:
    10583301
  • 财政年份:
    2023
  • 资助金额:
    $ 48.73万
  • 项目类别:
Prenatal Traffic-Related Air Pollutants, Placental Epitranscriptomics, and Child Cognition
产前交通相关空气污染物、胎盘表观转录组学和儿童认知
  • 批准号:
    10366988
  • 财政年份:
    2022
  • 资助金额:
    $ 48.73万
  • 项目类别:
Analysis of the protective effect of metallothioneins against lung injury caused by air pollutants.
金属硫蛋白对空气污染物所致肺损伤的保护作用分析
  • 批准号:
    22K06588
  • 财政年份:
    2022
  • 资助金额:
    $ 48.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel Approaches for Improving Inflammation Resolution Following Chronic Exposure to Air Pollutants
改善长期接触空气污染物后炎症消退的新方法
  • 批准号:
    10348421
  • 财政年份:
    2022
  • 资助金额:
    $ 48.73万
  • 项目类别:
Exposure to Ambient Air Pollutants, Circulating microRNAs, and Hepatic Fat Fraction Among Young Adults
年轻人接触环境空气污染物、循环 microRNA 和肝脂肪分数
  • 批准号:
    10537895
  • 财政年份:
    2022
  • 资助金额:
    $ 48.73万
  • 项目类别:
Development and/or evaluation of emission factors for Odour, air pollutants, greenhouse gas emissions and air quality impact assessment for industrial and municipal sources in cold region
寒冷地区工业和市政源恶臭、空气污染物、温室气体排放排放因子的制定和/或评价以及空气质量影响评价
  • 批准号:
    RGPIN-2019-07299
  • 财政年份:
    2022
  • 资助金额:
    $ 48.73万
  • 项目类别:
    Discovery Grants Program - Individual
Disrupting Noxious Synergies of Indoor Air Pollutants and their Impact in Childhood Health and Wellbeing, using Advanced Intelligent Multisensing and Green Interventions
利用先进的智能多传感和绿色干预措施,破坏室内空气污染物的有害协同作用及其对儿童健康和福祉的影响
  • 批准号:
    10051924
  • 财政年份:
    2022
  • 资助金额:
    $ 48.73万
  • 项目类别:
    EU-Funded
Prenatal Traffic-Related Air Pollutants, Placental Epitranscriptomics, and Child Cognition
产前交通相关空气污染物、胎盘表观转录组学和儿童认知
  • 批准号:
    10589926
  • 财政年份:
    2022
  • 资助金额:
    $ 48.73万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了