Bringing Modern Data Science Tools to Bear on Environmental Mixtures: Administrative Supplement for U3 Populations
将现代数据科学工具应用于环境混合物:U3 人群的行政补充
基本信息
- 批准号:9911827
- 负责人:
- 金额:$ 11.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:Administrative SupplementAir PollutionArchitectureAwardBayesian AnalysisBayesian MethodBirth RecordsChildChildhoodCommunitiesComplexComplex MixturesCrimeDataData ScienceData SetEnvironmental ExposureExposure toGeographyHousingIndividualIndustrializationLinkMachine LearningMaternal and Child HealthMethodologyMethodsModelingModernizationMovementNatureNeighborhoodsNorth CarolinaOutcomeParentsPerinatal mortality demographicsPollutionPopulationPovertyPregnancy RateProcessResearch PersonnelRiskSchoolsShapesSourceTimeUnemploymentUrsidae FamilyWorkdata resourceearly childhoodhealth care availabilitylead exposurelearning strategyperinatal morbiditypollutantpregnancy disorderracial and ethnic disparitiessegregationsocialsocial stressstressortoolweb site
项目摘要
Project Summary/Abstract of the PRIME parent award: Bringing Modern Data Science Tools to Bear on
Environmental Mixtures
Environmental exposures often cumulate in particular geographies, and the nature of the complex mixtures
that characterize these exposures remains understudied. In addition, adverse environmental exposures often
occur in communities facing multiple social stressors such as deteriorating housing, inadequate access to
health care, poor schools, high unemployment, crime, and poverty – all of which may compound the effects of
environmental exposures.
Our central objective is to develop new data architecture, statistical, and machine learning methods to
assess how exposure to environmental mixtures shapes educational outcomes in the presence or
absence of social stress. We focus on air pollution mixtures, childhood lead exposure, and social stressors.
We will implement our proposed work in North Carolina (NC), a state characterized by diverse environmental
features, industrial activities, and airsheds typified by varying pollution emission sources and resulting pollutant
mixtures.
To accomplish this central objective, we will first develop, document, and disseminate methods for building
space-time environmental and social data architectures. We will implement this for all of NC, incorporating data
on air pollution, lead exposure risk, and social exposures from 1990-2015+ (dataset 1). Second, we will refine
methods for linking unrelated datasets to build a space-time child movement and outcome data architecture
(dataset 2). Third, we will connect exposures (dataset 1) and outcomes (dataset 2) data via shared geography
and temporality into a single, comprehensive geodatabase. Fourth, we will implement increasingly complex
methods to assess the effect of environmental mixtures in the presence or absence of social stressors on early
childhood educational outcomes. We will document and disseminate all of the underlying methodological work
via public website.
The proposed work leverages a rich array of data resources already available to the investigators (with some
significantly post-processed) and allows tracking of children across space and time. Our team brings tools from
modern data science (hierarchical Bayesian methods with variable selection, spatial point process models,
machine learning) to bear on the critical question of how environmental mixtures shape child outcomes directly
and differentially in the presence of social stress.
项目摘要/PRIME家长奖摘要:将现代数据科学工具应用于
环境混合物
环境暴露通常在特定的地理区域累积,复杂混合物的性质
这些暴露的特征仍然没有得到充分研究。此外,不利的环境暴露往往
发生在面临多种社会压力的社区,如住房恶化,
医疗保健,贫困的学校,高失业率,犯罪和贫困-所有这些都可能加剧的影响,
环境暴露。
我们的核心目标是开发新的数据架构、统计和机器学习方法,
评估暴露于环境混合物如何塑造教育成果,
没有社会压力。我们专注于空气污染混合物,儿童铅暴露和社会压力。
我们将在北卡罗来纳州(NC)实施我们提出的工作,该州的特点是环境多样性
特征、工业活动和以不同污染排放源和产生的污染物为代表的空气区
混合物。
为了实现这一中心目标,我们将首先开发、记录和传播用于构建
时空环境和社会数据架构。我们将在所有NC中实现此功能,
1990-2015年+的空气污染、铅暴露风险和社会暴露(数据集1)。第二,我们将细化
链接不相关数据集以建立时空子运动和结果数据体系结构的方法
(数据集2)。第三,我们将通过共享地理位置连接暴露(数据集1)和结果(数据集2)数据
和时间性整合到一个综合地理数据库中。第四,我们将实施日益复杂的
评估在存在或不存在社会应激源的情况下环境混合物对早期
儿童教育成果。我们将记录和传播所有基本的方法学工作
通过公共网站。
拟议的工作利用了调查人员已经可用的丰富的数据资源(其中一些
后处理),并允许跨空间和时间跟踪儿童。我们的团队带来了来自
现代数据科学(具有变量选择的分层贝叶斯方法,空间点过程模型,
机器学习)来解决环境混合物如何直接塑造儿童结果的关键问题
在社会压力的存在下,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marie Lynn Miranda其他文献
Marie Lynn Miranda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marie Lynn Miranda', 18)}}的其他基金
BRINGING MODERN DATA SCIENCE TOOLS TO BEAR ON ENVIRONMENTAL MIXTURES
利用现代数据科学工具来研究环境混合物
- 批准号:
10304211 - 财政年份:2020
- 资助金额:
$ 11.74万 - 项目类别:
BRINGING MODERN DATA SCIENCE TOOLS TO BEAR ON ENVIRONMENTAL MIXTURES
利用现代数据科学工具来研究环境混合物
- 批准号:
10273235 - 财政年份:2020
- 资助金额:
$ 11.74万 - 项目类别:
Time Sensitive Award Mechanism - Using Exposure Science to Identify Populations at Risk in the Aftermath of Hurricane Harvey
时间敏感的奖励机制 - 利用暴露科学来识别飓风哈维后面临风险的人群
- 批准号:
10195430 - 财政年份:2018
- 资助金额:
$ 11.74万 - 项目类别:
Bringing Modern Data Science Tools to Bear on Environmental Mixtures
将现代数据科学工具应用于环境混合物
- 批准号:
9882999 - 财政年份:2018
- 资助金额:
$ 11.74万 - 项目类别:
African Americans and Environmental Cancers: Sharing Histories to Build Trust
非裔美国人与环境癌症:分享历史以建立信任
- 批准号:
8073677 - 财政年份:2010
- 资助金额:
$ 11.74万 - 项目类别:
African Americans and Environmental Cancers: Sharing Histories to Build Trust
非裔美国人与环境癌症:分享历史以建立信任
- 批准号:
7941808 - 财政年份:2009
- 资助金额:
$ 11.74万 - 项目类别:
African Americans and Environmental Cancers: Sharing Histories to Build Trust
非裔美国人与环境癌症:分享历史以建立信任
- 批准号:
7815611 - 财政年份:2009
- 资助金额:
$ 11.74万 - 项目类别:
相似海外基金
Simulating Urban Air Pollution In The Lab
在实验室模拟城市空气污染
- 批准号:
MR/Y020014/1 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Fellowship
Suppression of air pollution via aerosol mediated removal of peroxy radicals
通过气溶胶介导去除过氧自由基抑制空气污染
- 批准号:
NE/Y000226/1 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Research Grant
Geographic and Sociodemographic Variability in Air Pollution Exposure
空气污染暴露的地理和社会人口变化
- 批准号:
2342266 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Standard Grant
Air-pollution Innovation in Regional-forecasts utilising operational Satellite Applications and Technologies (AIRSAT)
利用卫星应用和技术(AIRSAT)进行区域预测的空气污染创新
- 批准号:
NE/Y005147/1 - 财政年份:2024
- 资助金额:
$ 11.74万 - 项目类别:
Research Grant
Air pollution and Asthma in Canada: Projections of burden and the value of climate adaptation strategies
加拿大的空气污染和哮喘:负担预测和气候适应战略的价值
- 批准号:
485322 - 财政年份:2023
- 资助金额:
$ 11.74万 - 项目类别:
Operating Grants
Health effects of low-concentration, non-urban air pollution: health impacts of ship emission controls
低浓度非城市空气污染对健康的影响:船舶排放控制对健康的影响
- 批准号:
23H03158 - 财政年份:2023
- 资助金额:
$ 11.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Political Economy of Vulnerability to Air Pollution in Kathmandu Valley, Nepal
尼泊尔加德满都谷地空气污染脆弱性的政治经济学
- 批准号:
2884672 - 财政年份:2023
- 资助金额:
$ 11.74万 - 项目类别:
Studentship
Improving our understanding of the atmospheric sulfur cycle and its impact on air pollution and climate
提高我们对大气硫循环及其对空气污染和气候影响的了解
- 批准号:
2885122 - 财政年份:2023
- 资助金额:
$ 11.74万 - 项目类别:
Studentship
Impacts of Air Pollution from Ultrafine Tire-Wear Particles on Cardiorespiratory Health
超细轮胎磨损颗粒造成的空气污染对心肺健康的影响
- 批准号:
2899750 - 财政年份:2023
- 资助金额:
$ 11.74万 - 项目类别:
Studentship
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 11.74万 - 项目类别: