Using an Online Video Game to Predict Functional and Cognitive Decline within the MindCrowd Electronic Cohort

使用在线视频游戏来预测 MindCrowd 电子队列中的功能和认知衰退

基本信息

  • 批准号:
    10314477
  • 负责人:
  • 金额:
    $ 6.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Despite the best scientific efforts, no new treatment for Alzheimer’s Disease (AD) has been approved by the FDA since 2003. However, this may not be due to the treatment under investigation but rather clinical heterogeneity within the study sample, as a subset of participants may not have AD or experience little to no decline in AD symptoms. Thus, to improve the likelihood of success, AD clinical trials must homogenize or enrich their study sample with individuals who will experience more rapid decline and are biologically- confirmed with AD. One enrichment solution is related to the degree of performance change a person experiences due to repeated exposure of a screening assessment, known as a practice effect. Practice effects can be used to inform prognosis, diagnosis and treatment response in AD. We have recently designed an online video game, called SuperG, that uses finger coordination to assess individual practice effects without supervision in less than 7 minutes. We intend to deploy our online video game into MindCrowd, an electronic cohort of >100,000 participants worldwide designed with the infrastructure for remote, large-scale, and widely- distributed research to discover and study early biomarkers of AD. The long-term goal of this project is to merge the PI’s experience in learning and video game development with his interest in AD-focused research to enhance his career in creating next-generation, ‘crowd-sourced’ screening procedures to enrich the AD clinical trial enterprise. The overall objective of this application is to utilize the MindCrowd electronic cohort to determine how learning capacity, assayed with SuperG, relates to changes in cognition and daily function over time, while providing valuable mentorship for the PI in motor-cognitive interactions, electronic cohorts and practice effects in the context of aging. Based on extensive published and pilot work from the mentorship team, the central hypothesis is that practice effects on SuperG will predict one-year changes in cognition and daily function among MindCrowd older adults. Since SuperG game play is easily collected online, the rationale for this proposed research in a distributed electronic cohort offers an affordable and efficient means to enrich clinical trials in AD. There are two independent aims within this proposal. First, we will determine the extent that SuperG practice effects predict one-year cognitive change in older adults. Second, we will determine the extent that SuperG practice effects predict one-year functional change in older adults. If successful, this project will provide cognitive aging research with a novel online screening tool that has the potential to enrich future Alzheimer’s Disease and Related Dementia clinical trials. This project also incorporates the PI’s career goals and training activities concerning: motor-cognitive interactions, electronic cohorts, and practice effects, together providing for independence in the establishment of a “virtual” lab with modern capabilities. Further, the ‘socially-distanced’ nature of this project is particularly relevant in the context of COVID-19 and will allow for the safe inclusion of participants remotely.
摘要 尽管最好的科学努力,没有新的治疗阿尔茨海默病(AD)已被批准的 FDA自2003年以来然而,这可能不是由于正在研究的治疗,而是由于临床 研究样本内的异质性,因为一部分参与者可能没有患有AD或几乎没有经历过AD 减少AD症状。因此,为了提高成功的可能性,AD临床试验必须同质化或 用那些会经历更快衰退的人来丰富他们的研究样本, 与AD确认。一个丰富的解决方案是有关的程度的表现改变一个人 经验,由于反复暴露的筛选评估,被称为实践效果。实践效果 可用于告知AD的预后、诊断和治疗反应。我们最近设计了一个 一款名为SuperG的在线视频游戏,它使用手指协调来评估个人练习效果, 不到7分钟的监督。我们打算将我们的在线视频游戏部署到MindCrowd中, 全球超过100,000名参与者的队列,其基础设施设计用于远程、大规模和广泛的 分布式研究发现和研究AD的早期生物标志物。该项目的长期目标是 将PI在学习和视频游戏开发方面的经验与他对以广告为重点的研究的兴趣相结合, 加强他的职业生涯,创造下一代,“众包”筛选程序,以丰富AD临床 试验企业。该应用程序的总体目标是利用MindCrowd电子队列, 确定如何学习能力,与SuperG测定,涉及认知和日常功能的变化, 时间,同时为PI在运动认知互动,电子队列和 在老龄化背景下的实践效果。基于导师团队的广泛出版和试点工作, 核心假设是,对SuperG的练习效果将预测认知和日常生活的一年变化。 在MindCrowd老年人中发挥作用。由于SuperG游戏很容易在线收集, 这项在分布式电子队列中进行的拟议研究提供了一种负担得起的有效手段, AD的临床试验这项建议有两个独立的目标。首先,我们将确定 SuperG练习效果预测老年人一年的认知变化。二是 确定SuperG练习效果预测老年人一年功能变化的程度。如果 该项目取得成功后,将为认知衰老研究提供一种新型在线筛查工具,该工具具有 有可能丰富未来的阿尔茨海默病和相关痴呆症临床试验。该项目还 包括PI的职业目标和培训活动,涉及:运动认知互动,电子 队列,实践效果,共同提供了建立一个“虚拟”实验室的独立性, 现代能力。此外,该项目的“社会距离”性质在这一背景下特别重要。 COVID-19的影响,并将允许远程安全参与者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Hooyman其他文献

Andrew Hooyman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Hooyman', 18)}}的其他基金

Using an Online Video Game to Predict Functional and Cognitive Decline within the MindCrowd Electronic Cohort
使用在线视频游戏来预测 MindCrowd 电子队列中的功能和认知衰退
  • 批准号:
    10526393
  • 财政年份:
    2022
  • 资助金额:
    $ 6.64万
  • 项目类别:

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
online SPE/HPLC-ICP-MS多元素形态分析新方法研究荷塘中铬砷镉汞铅的迁移转化规律
  • 批准号:
    21976048
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
双积分政策下基于Online Review的新能源汽车企业跨链决策优化研究
  • 批准号:
    71964023
  • 批准年份:
    2019
  • 资助金额:
    27.5 万元
  • 项目类别:
    地区科学基金项目
面向Online-to-Offline智能商务的大数据融合与应用
  • 批准号:
    91646204
  • 批准年份:
    2016
  • 资助金额:
    201.0 万元
  • 项目类别:
    重大研究计划
Online-to-Offline商务环境下"切客"一族生活模式挖掘研究
  • 批准号:
    71172046
  • 批准年份:
    2011
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目

相似海外基金

High Quality-of-Experience Real-time Video for Smart Online Shopping
智能在线购物的高质量体验实时视频
  • 批准号:
    LP230100294
  • 财政年份:
    2024
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Linkage Projects
Media-Cultural Research of Local Information Distribution on Online Video Sharing platform
网络视频共享平台上地方信息传播的媒介文化研究
  • 批准号:
    23K12613
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
South Asian cinema and video online distribution (VOD) research network
南亚电影和视频在线发行 (VOD) 研究网络
  • 批准号:
    AH/W006464/2
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Research Grant
MOVE - Marketing Online through user-generated Video Engagement - Qubeeo Limited
MOVE - 通过用户生成的视频参与进行在线营销 - Qubeeo Limited
  • 批准号:
    10057623
  • 财政年份:
    2023
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Collaborative R&D
South Asian cinema and video online distribution (VOD) research network
南亚电影和视频在线发行 (VOD) 研究网络
  • 批准号:
    AH/W006464/1
  • 财政年份:
    2022
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Research Grant
Using an Online Video Game to Predict Functional and Cognitive Decline within the MindCrowd Electronic Cohort
使用在线视频游戏来预测 MindCrowd 电子队列中的功能和认知衰退
  • 批准号:
    10526393
  • 财政年份:
    2022
  • 资助金额:
    $ 6.64万
  • 项目类别:
Exploring self and peer-reflection through a video tagging tool for online and classroom-based lessons for EAP settings
通过针对 EAP 设置的在线和课堂课程的视频标记工具探索自我和同伴反思
  • 批准号:
    2717848
  • 财政年份:
    2022
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Studentship
Collaborative Research: Using Artificial Intelligence to Transform Online Video Lectures into Effective and Inclusive Agent-Based Presentations
协作研究:利用人工智能将在线视频讲座转变为有效且包容的基于代理的演示
  • 批准号:
    2201019
  • 财政年份:
    2022
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Artificial Intelligence to Transform Online Video Lectures into Effective and Inclusive Agent-Based Presentations
协作研究:利用人工智能将在线视频讲座转变为有效且包容的基于代理的演示
  • 批准号:
    2201020
  • 财政年份:
    2022
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Standard Grant
Development of assistive teaching materials for disabled children, with which an online video content distributed by a zoo or an aquarium becomes barrier-free
开发残疾儿童辅助教材,让动物园、水族馆发布的在线视频内容变得无障碍
  • 批准号:
    22K12306
  • 财政年份:
    2022
  • 资助金额:
    $ 6.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了