A novel robotic wastewater analysis system to quantify opioid exposure and treatment in residential communities
一种新型机器人废水分析系统,用于量化住宅社区中阿片类药物的暴露和处理
基本信息
- 批准号:10313450
- 负责人:
- 金额:$ 54.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAdoptionAlgorithmsAmericanBenchmarkingBiological MarkersBostonBuprenorphineCessation of lifeCitiesCodeCollaborationsCollectionCommunitiesDataData AnalyticsData SetData SourcesDeath RateDetectionDevelopmentDevicesDropsDrug ExposureDrug usageEnsureEpidemicFeedbackFentanylGeographyGoalsGoldGovernmentGovernment OfficialsGrantHeroinHigh Pressure Liquid ChromatographyHospitalsHourHumanIllicit DrugsInfrastructureInterventionMassachusettsMeasuresMedical emergencyMethadoneMethodsModelingModificationMorbidity - disease rateMunicipalitiesNaloxoneNaltrexoneNeighborhoodsNorth CarolinaOpioidOverdoseParentsPatternPharmaceutical PreparationsPhasePilot ProjectsPlantsPoliciesPopulationPublic HealthPublishingRainRecording of previous eventsReportingResolutionRoboticsSamplingSiteSmall Business Innovation Research GrantSufentanilSystemSystems AnalysisTechniquesTechnologyTestingTimeUnited StatesUpdateUrineVisualizationWeatherWomananalogbasedashboarddata analysis pipelinedata visualizationdesignfallshealth dataillicit opioidimprovedinnovationinsightinstrumentinterestmedical schoolsmodels and simulationnovelonline versionopioid abuseopioid epidemicopioid exposureopioid overdoseopioid useopioid use disorderoutreachoverdose deathprescription opioidresponsesample collectionsuccesstoolurinarywastewater samplingwastewater testing
项目摘要
Project Summary
This proposed Phase I/Phase II FastTrack SBIR project will lead to the demonstration of a
robust wastewater testing and analytics platform that government stakeholders can use to guide
localized actions to respond to the opioid epidemic. The opioid epidemic is the biggest drug
crisis in American history, resulting in over 130 deaths every day. Currently, stakeholders use
overdose death data to guide their opioid response strategies. However, this data is infrequently
updated, often aggregated at geographic levels which are too large to be actionable by public
health officials, and rarely provides insight into specific drug types (e.g. prescription vs. illicit
opioids, fentanyl, etc.). Novel data sources which provide localized, real-time, and drug-specific
insights are needed to inform response efforts in this rapidly changing epidemic.
Wastewater-based testing is a promising approach for measuring population-level drug
exposure, but has significant technical limitations before it can be useful to stakeholders on the
frontlines of the epidemic. Specifically, current wastewater testing approaches rely on sampling
at wastewater treatment plants, which yields city-level data at best. This represents a
heterogenous sample and is not useful to guide localized interventions.
Biobot is the first commercial wastewater testing technology designed and built to provide
actionable public health insights for municipal stakeholders tackling the opioid epidemic. Our
robotic wastewater analysis system measures opioid exposure and treatment (distinguishing
human use from discarding in the toilet), and operates at the neighborhood-level — the
geographic resolution relevant to municipal stakeholders. The premiere version of our platform
includes (1) an algorithm to select sampling sites (manholes) that represent residential
communities in a municipality; (2) a robotic sampling device that can be installed under sewer
access portals (e.g. manhole covers) to collect 24-hour composite samples; (3) a HPLC-MS/MS
method that detects a variety of urinary metabolites of prescription opioids, methadone,
buprenorphine, and naloxone; and (4) visualization in printed reports.
The goal of this Fast Track Phase I/Phase II application is to improve our platform to make it
adoptable in cities across the nation. In collaboration with leading toxicologists at Brigham and
Women’s Hospital and Harvard Medical School, we will address technological gaps to improve
data reliability and move from detection to consistent quantification of opioid exposure and
treatment. In Phase I, we will improve and expand our HPLC-MS/MS method, develop
simulation models to optimize sample collection, and address the variability challenge of
24-hour sampling. In Phase II, we will develop data correction methods to enable integration
with all existing sewer infrastructures, validate our data against reported overdoses in a pilot
study across six Massachusetts municipalities, and build a data analytics and visualization
platform for our end users.
Successful completion of the proposed project will lead to an optimized and validated
wastewater testing technology that provides accurate, spatially granular, and more real-time
data on opioid exposure and treatment. In parallel with the technological development, this grant
will allow us to demonstrate the value of our product to two key customers: the City of Boston
and the State of Massachusetts. These two government organizations are key champions to
pave the way for long-term adoption by our target customers.
项目摘要
这个拟议的第一阶段/第二阶段FastTrack SBIR项目将导致演示
强大的废水测试和分析平台,政府利益相关者可以使用该平台来指导
应对阿片类药物流行的本地化行动。阿片类药物的流行是最大的毒品
美国历史上最大的一场危机,每天造成130多人死亡。目前,利益相关者使用
过量死亡数据,以指导他们的阿片类药物反应策略。然而,这种数据很少出现
更新,通常聚集在太大而无法由公众采取行动的地理级别
卫生官员,很少提供对特定药物类型的洞察(例如,处方药与非法药物
阿片类药物、芬太尼等)。提供本地化、实时和特定于药物的新型数据源
在这一迅速变化的流行病中,需要洞察力来为应对工作提供信息。
基于废水的测试是测量人群水平药物的一种很有前途的方法
风险敞口,但在对利益相关者有用之前有很大的技术限制
疫情的前线。具体地说,目前的废水测试方法依赖于采样
在废水处理厂,最多只能产生市级数据。这表示一个
样本不均匀,对指导本地化干预没有用处。
生物机器人是第一个设计和建造的商业废水测试技术,以提供
为应对阿片类药物流行的市政利益攸关方提供可操作的公共卫生见解。我们的
机器人废水分析系统测量阿片类药物的暴露和治疗(区分
人类使用(从厕所中丢弃),并在社区层面上操作-
与市政利益相关者相关的地理分辨率。我们平台的首发版本
包括(1)选择代表住宅的采样点(检修孔)的算法
市政社区;(2)可安装在下水道下的机器人采样装置
进入入口(如井盖)以24小时采集复合样品;(3)高效液相色谱-质谱仪/质谱仪
一种检测处方类阿片、美沙酮、
丁丙诺啡和纳洛酮;以及(4)打印报告中的可视化。
此Fast Track第一阶段/第二阶段应用程序的目标是改进我们的平台,使其
可在全国各地的城市采用。与布里格姆大学领先的毒物学家合作
妇女医院和哈佛医学院,我们将解决技术差距,以提高
数据可靠性,并从阿片类药物暴露的检测转移到一致的量化
治疗。在第一阶段,我们将改进和扩展我们的LC-MS/MS方法,开发
模拟模型,以优化样本收集,并解决变异性挑战
24小时采样。在第二阶段,我们将开发数据校正方法,以实现集成
利用所有现有的下水道基础设施,在试点中对照报告的过量验证我们的数据
研究六个马萨诸塞州市政当局,并建立数据分析和可视化
为我们的最终用户提供平台。
拟议项目的成功完成将导致优化和验证
废水测试技术,提供准确、空间粒度和更实时的
关于阿片类药物暴露和治疗的数据。在技术发展的同时,这笔赠款
将使我们能够向两个主要客户展示我们产品的价值:波士顿
和马萨诸塞州。这两个政府组织是
为我们的目标客户长期采用铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter R Chai其他文献
Advising Around Cannabis for Sleep: Clearing Up the Smoke
关于大麻睡眠的建议:清除烟雾
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Stephanie Tung;Peter R Chai;M. Nayak;Ilana M Braun - 通讯作者:
Ilana M Braun
Peter R Chai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter R Chai', 18)}}的其他基金
Ketamine for the treatment for opioid use disorder and suicidal ideation in the emergency department
氯胺酮用于治疗急诊科阿片类药物使用障碍和自杀意念
- 批准号:
10646993 - 财政年份:2023
- 资助金额:
$ 54.91万 - 项目类别:
A novel robotic wastewater analysis system to quantify opioid exposure and treatment in residential communities
一种新型机器人废水分析系统,用于量化住宅社区中阿片类药物的暴露和处理
- 批准号:
10549579 - 财政年份:2022
- 资助金额:
$ 54.91万 - 项目类别:
Ketamine for the treatment for alcohol use disorder in the emergency department: A pilot double-blind, placebo-controlled randomized clinical trial
氯胺酮在急诊科治疗酒精使用障碍:一项双盲、安慰剂对照随机临床试验
- 批准号:
10593244 - 财政年份:2022
- 资助金额:
$ 54.91万 - 项目类别:
Smart Steps: A context-aware adherence intervention to improve PrEP adherence among men who have sex with men (MSM) with substance use disorder
明智的步骤:情境感知的依从性干预措施可提高患有物质使用障碍的男男性行为者 (MSM) 的 PrEP 依从性
- 批准号:
10468388 - 财政年份:2022
- 资助金额:
$ 54.91万 - 项目类别:
Ketamine for the treatment for alcohol use disorder in the emergency department: A pilot double-blind, placebo-controlled randomized clinical trial
氯胺酮在急诊科治疗酒精使用障碍:一项试点双盲、安慰剂对照随机临床试验
- 批准号:
10703512 - 财政年份:2022
- 资助金额:
$ 54.91万 - 项目类别:
A novel robotic wastewater analysis system to quantify opioid exposure and treatment in residential communities
一种新型机器人废水分析系统,用于量化住宅社区中阿片类药物的暴露和处理
- 批准号:
10328984 - 财政年份:2020
- 资助金额:
$ 54.91万 - 项目类别:
A novel robotic wastewater analysis system to quantify opioid exposure and treatment in residential communities
一种新型机器人废水分析系统,用于量化住宅社区中阿片类药物的暴露和处理
- 批准号:
10381304 - 财政年份:2020
- 资助金额:
$ 54.91万 - 项目类别:
Development of Ingestible Biosensors to Enhance PrEP Adherence in Substance Users
开发可摄入生物传感器以增强药物使用者的 PrEP 依从性
- 批准号:
10401432 - 财政年份:2018
- 资助金额:
$ 54.91万 - 项目类别:
Development of Ingestible Biosensors to Enhance PrEP Adherence in Substance Users
开发可摄入生物传感器以增强药物使用者的 PrEP 依从性
- 批准号:
9924467 - 财政年份:2018
- 资助金额:
$ 54.91万 - 项目类别:
Development of Ingestible Biosensors to Enhance PrEP Adherence in Substance Users
开发可摄入生物传感器以增强药物使用者的 PrEP 依从性
- 批准号:
10674107 - 财政年份:2018
- 资助金额:
$ 54.91万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 54.91万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 54.91万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 54.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 54.91万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 54.91万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 54.91万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 54.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 54.91万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 54.91万 - 项目类别:
Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 54.91万 - 项目类别:
Research Fellowships














{{item.name}}会员




