Essential role of Stasimon in motor circuit development and disease
Stasimon 在运动回路发育和疾病中的重要作用
基本信息
- 批准号:10312031
- 负责人:
- 金额:$ 58.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAfferent NeuronsAnimal ModelBehaviorBehavioralBiological AssayBreathingCell modelCellsCessation of lifeDataDeafferentation procedureDeglutitionDevelopmentDiseaseEventFunctional disorderGene DeliveryGene MutationGoalsHealthHomeostasisHumanInduced MutationInheritedIntegral Membrane ProteinInterneuronsKnockout MiceKnowledgeLinkLipidsLocomotionMammalian CellMediatingMediator of activation proteinMembrane BiologyMitochondriaMolecularMorphologyMotorMotor NeuronsMovementMusMuscleMutant Strains MiceNeuraxisNeurobiologyNeurodegenerative DisordersNeuromuscular DiseasesNeuronsPathogenesisPathogenicityPathologyPathway interactionsPatternPeripheralPhysiologicalProcessPropertyProprioceptorPublishingRegulationRespirationRoleSMN deficiencySMN protein (spinal muscular atrophy)SensoryShapesSiteSpinalSpinal Muscular AtrophySynapsesSynaptic TransmissionSystemSystems DevelopmentTestingTranslatingViralWorkbrain pathwaycell growth regulationcell typecellular targetingconditional knockoutdesignhuman diseasein vivomembermitochondrial membranemotor controlmotor deficitmotor disordermouse modelmultidisciplinaryneural circuitneuron lossneuronal survivalnovelrestorationskeletal muscle wastingspinal reflexsynaptic function
项目摘要
Motor circuits control fundamental behaviors such as swallowing, breathing and locomotion. Spinal motor
neurons are the key mediators translating motor commands generated within the central nervous system to
peripheral muscle targets. Motor neurons are activated by a precisely regulated pattern of synaptic activity from
sensory neurons, local spinal interneurons and descending pathways from the brain. Additionally, synaptic
activity received by motor neurons during early development shapes their functional properties. In contrast, gene
mutations that induce perturbations in either neuronal wiring or synaptic drive received by motor neurons often
result in motor system disorders, although the primary cellular targets and the precise molecular events remain
largely elusive. Thus, understanding the principles of neural circuit development and function as well as the
mechanisms of synaptic dysfunction and selective neuronal death in human disease represent outstanding
challenges in neurobiology. A prominent example of this situation is spinal muscular atrophy (SMA)—an inherited
neuromuscular disease caused by ubiquitous deficiency in the survival motor neuron (SMN) protein. SMA
pathogenesis involves alterations of multiple components of the motor circuit leading to abnormalities in spinal
reflexes, motor neuron loss and skeletal muscle atrophy. However, the molecular and cellular mechanisms
underlying motor circuit dysfunction in SMA remain poorly understood. In our previous work we have identified
Stasimon as a novel transmembrane protein that localizes at contacts sites between ER and mitochondria
membranes and contributes to motor dysfunction in animal models of SMA through undefined mechanisms.
Furthermore, our preliminary studies revealed that Stasimon’s conditional depletion in neural circuits severely
disrupts motor function in mouse models, pointing to an essential requirement for normal motor system
development and function. Building on these findings, our goal is to define the neural circuit components and
cellular pathway(s) in which Stasimon functions that underlie its essential role in the motor circuit and contribution
to human disease. To do so, we will employ newly developed conditional mice for cell type-specific restoration
of Stasimon in vivo to study whether Stasimon dysfunction induced by SMN deficiency acts cell autonomously
to promote death of SMA motor neurons and non-cell autonomously to alter motor neuron firing through
dysfunction of proprioceptive sensory neurons (Aim 1). We will also investigate the temporal and spatial
requirement of Stasimon for normal development and function of the sensory-motor circuit using novel
conditional knockout mice we have recently developed (Aim 2). Lastly, we will use both cellular and mouse
models to characterize the molecular function of Stasimon at the ER-mitochondria contacts and its requirement
for motor circuit function in health and disease (Aim 3). The successful accomplishment of the objectives of this
proposal will characterize novel aspects of synaptic transmission and motor circuit function as well as the
underlying mechanisms of SMA.
运动回路控制吞咽、呼吸和运动等基本行为。脊柱运动
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Livio Pellizzoni其他文献
Livio Pellizzoni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Livio Pellizzoni', 18)}}的其他基金
Mechanisms and therapeutic targeting of motor neuron death in SMA
SMA 运动神经元死亡的机制和治疗靶向
- 批准号:
10334501 - 财政年份:2020
- 资助金额:
$ 58.18万 - 项目类别:
Mechanisms and therapeutic targeting of motor neuron death in SMA
SMA 运动神经元死亡的机制和治疗靶向
- 批准号:
10559530 - 财政年份:2020
- 资助金额:
$ 58.18万 - 项目类别:
Mechanisms and therapeutic targeting of motor neuron death in SMA
SMA 运动神经元死亡的机制和治疗靶向
- 批准号:
10087983 - 财政年份:2020
- 资助金额:
$ 58.18万 - 项目类别:
Essential role of Stasimon in motor circuit development and disease
Stasimon 在运动回路发育和疾病中的重要作用
- 批准号:
10531553 - 财政年份:2019
- 资助金额:
$ 58.18万 - 项目类别:
Essential role of Stasimon in motor circuit development and disease
Stasimon 在运动回路发育和疾病中的重要作用
- 批准号:
10057404 - 财政年份:2019
- 资助金额:
$ 58.18万 - 项目类别:
RNA-mediated mechanisms of motor system dysfunction in spinal muscular atrophy
RNA介导的脊髓性肌萎缩症运动系统功能障碍的机制
- 批准号:
10022699 - 财政年份:2019
- 资助金额:
$ 58.18万 - 项目类别:
The Role of p38 MAPK Activation in Spinal Muscular Atrophy
p38 MAPK 激活在脊髓性肌萎缩症中的作用
- 批准号:
9317946 - 财政年份:2017
- 资助金额:
$ 58.18万 - 项目类别:
A genome-wide phenotypic screen for modifiers of SMN expression and function
SMN 表达和功能修饰因子的全基因组表型筛选
- 批准号:
8702410 - 财政年份:2014
- 资助金额:
$ 58.18万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 58.18万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 58.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 58.18万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 58.18万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 58.18万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 58.18万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 58.18万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 58.18万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 58.18万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 58.18万 - 项目类别:
Discovery Grants Program - Individual