Essential role of Stasimon in motor circuit development and disease
Stasimon 在运动回路发育和疾病中的重要作用
基本信息
- 批准号:10057404
- 负责人:
- 金额:$ 58.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAfferent NeuronsAnimal ModelBehaviorBehavioralBiological AssayBreathingCell modelCellsCessation of lifeDataDeafferentation procedureDeglutitionDevelopmentDiseaseEventFunctional disorderGene DeliveryGene MutationGoalsHealthHomeostasisHumanInduced MutationInheritedIntegral Membrane ProteinInterneuronsKnockout MiceKnowledgeLinkLipidsLocomotionMammalian CellMediatingMediator of activation proteinMembrane BiologyMitochondriaMolecularMorphologyMotorMotor NeuronsMovementMusMuscleMutant Strains MiceNeuraxisNeurobiologyNeurodegenerative DisordersNeuromuscular DiseasesNeuronsPathogenesisPathogenicityPathologyPathway interactionsPatternPeripheralPhysiologicalProcessPropertyProprioceptorPublishingRegulationRespirationRoleSMN deficiencySMN protein (spinal muscular atrophy)SensoryShapesSiteSpinalSpinal Muscular AtrophySynapsesSynaptic TransmissionSystemSystems DevelopmentTestingTranslatingViralWorkbrain pathwaycell growth regulationcell typecellular targetingconditional knockoutdesignhuman diseasein vivomembermitochondrial membranemotor controlmotor deficitmotor disordermouse modelmultidisciplinaryneural circuitneuron lossneuronal survivalnovelrestorationskeletal muscle wastingspinal reflexsynaptic function
项目摘要
Motor circuits control fundamental behaviors such as swallowing, breathing and locomotion. Spinal motor
neurons are the key mediators translating motor commands generated within the central nervous system to
peripheral muscle targets. Motor neurons are activated by a precisely regulated pattern of synaptic activity from
sensory neurons, local spinal interneurons and descending pathways from the brain. Additionally, synaptic
activity received by motor neurons during early development shapes their functional properties. In contrast, gene
mutations that induce perturbations in either neuronal wiring or synaptic drive received by motor neurons often
result in motor system disorders, although the primary cellular targets and the precise molecular events remain
largely elusive. Thus, understanding the principles of neural circuit development and function as well as the
mechanisms of synaptic dysfunction and selective neuronal death in human disease represent outstanding
challenges in neurobiology. A prominent example of this situation is spinal muscular atrophy (SMA)—an inherited
neuromuscular disease caused by ubiquitous deficiency in the survival motor neuron (SMN) protein. SMA
pathogenesis involves alterations of multiple components of the motor circuit leading to abnormalities in spinal
reflexes, motor neuron loss and skeletal muscle atrophy. However, the molecular and cellular mechanisms
underlying motor circuit dysfunction in SMA remain poorly understood. In our previous work we have identified
Stasimon as a novel transmembrane protein that localizes at contacts sites between ER and mitochondria
membranes and contributes to motor dysfunction in animal models of SMA through undefined mechanisms.
Furthermore, our preliminary studies revealed that Stasimon’s conditional depletion in neural circuits severely
disrupts motor function in mouse models, pointing to an essential requirement for normal motor system
development and function. Building on these findings, our goal is to define the neural circuit components and
cellular pathway(s) in which Stasimon functions that underlie its essential role in the motor circuit and contribution
to human disease. To do so, we will employ newly developed conditional mice for cell type-specific restoration
of Stasimon in vivo to study whether Stasimon dysfunction induced by SMN deficiency acts cell autonomously
to promote death of SMA motor neurons and non-cell autonomously to alter motor neuron firing through
dysfunction of proprioceptive sensory neurons (Aim 1). We will also investigate the temporal and spatial
requirement of Stasimon for normal development and function of the sensory-motor circuit using novel
conditional knockout mice we have recently developed (Aim 2). Lastly, we will use both cellular and mouse
models to characterize the molecular function of Stasimon at the ER-mitochondria contacts and its requirement
for motor circuit function in health and disease (Aim 3). The successful accomplishment of the objectives of this
proposal will characterize novel aspects of synaptic transmission and motor circuit function as well as the
underlying mechanisms of SMA.
运动回路控制吞咽、呼吸和运动等基本行为。 脊髓运动
神经元是将中枢神经系统内产生的运动命令翻译成
周围肌肉目标。 运动神经元由精确调节的突触活动模式激活
感觉神经元、局部脊髓中间神经元和来自大脑的下行通路。 此外,突触
运动神经元在早期发育过程中接收到的活动决定了它们的功能特性。 相比之下,基因
突变通常会引起运动神经元接收的神经元连线或突触驱动的扰动
导致运动系统障碍,尽管主要细胞目标和精确的分子事件仍然存在
很大程度上难以捉摸。 因此,了解神经回路发育和功能的原理以及
人类疾病中突触功能障碍和选择性神经元死亡的机制代表了杰出的
神经生物学的挑战。 这种情况的一个突出例子是脊髓性肌肉萎缩症(SMA)——一种遗传性的疾病
由于运动神经元存活蛋白 (SMN) 普遍缺乏而引起的神经肌肉疾病。 SMA
发病机制涉及运动回路多个组件的改变,导致脊柱异常
反射、运动神经元丧失和骨骼肌萎缩。 然而,分子和细胞机制
SMA 中潜在的运动电路功能障碍仍然知之甚少。 在我们之前的工作中,我们已经确定
Stasimon 作为一种新型跨膜蛋白,定位于 ER 和线粒体之间的接触位点
SMA 动物模型中的膜和通过未定义的机制导致运动功能障碍。
此外,我们的初步研究表明,Stasimon 的神经回路有条件耗竭
扰乱小鼠模型的运动功能,表明正常运动系统的基本要求
发育和功能。 基于这些发现,我们的目标是定义神经回路组件和
Stasimon 发挥作用的细胞通路是其在运动回路中的重要作用和贡献
人类疾病。 为此,我们将采用新开发的条件小鼠进行细胞类型特异性恢复
研究 SMN 缺陷引起的 Stasimon 功能障碍是否自主作用于细胞
促进 SMA 运动神经元和非细胞自主死亡,改变运动神经元的放电
本体感觉神经元功能障碍(目标 1)。 我们还将调查时间和空间
Stasimon 使用新颖的感觉运动电路正常发育和功能的要求
我们最近开发了条件敲除小鼠(目标 2)。 最后,我们将同时使用蜂窝网络和鼠标
表征 Stasimon 在 ER-线粒体接触处的分子功能及其要求的模型
用于健康和疾病中的运动电路功能(目标 3)。 成功实现本次活动的目标
该提案将描述突触传递和运动电路功能的新颖方面以及
SMA 的基本机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Livio Pellizzoni其他文献
Livio Pellizzoni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Livio Pellizzoni', 18)}}的其他基金
Mechanisms and therapeutic targeting of motor neuron death in SMA
SMA 运动神经元死亡的机制和治疗靶向
- 批准号:
10334501 - 财政年份:2020
- 资助金额:
$ 58.18万 - 项目类别:
Mechanisms and therapeutic targeting of motor neuron death in SMA
SMA 运动神经元死亡的机制和治疗靶向
- 批准号:
10559530 - 财政年份:2020
- 资助金额:
$ 58.18万 - 项目类别:
Mechanisms and therapeutic targeting of motor neuron death in SMA
SMA 运动神经元死亡的机制和治疗靶向
- 批准号:
10087983 - 财政年份:2020
- 资助金额:
$ 58.18万 - 项目类别:
Essential role of Stasimon in motor circuit development and disease
Stasimon 在运动回路发育和疾病中的重要作用
- 批准号:
10312031 - 财政年份:2019
- 资助金额:
$ 58.18万 - 项目类别:
Essential role of Stasimon in motor circuit development and disease
Stasimon 在运动回路发育和疾病中的重要作用
- 批准号:
10531553 - 财政年份:2019
- 资助金额:
$ 58.18万 - 项目类别:
RNA-mediated mechanisms of motor system dysfunction in spinal muscular atrophy
RNA介导的脊髓性肌萎缩症运动系统功能障碍的机制
- 批准号:
10022699 - 财政年份:2019
- 资助金额:
$ 58.18万 - 项目类别:
The Role of p38 MAPK Activation in Spinal Muscular Atrophy
p38 MAPK 激活在脊髓性肌萎缩症中的作用
- 批准号:
9317946 - 财政年份:2017
- 资助金额:
$ 58.18万 - 项目类别:
A genome-wide phenotypic screen for modifiers of SMN expression and function
SMN 表达和功能修饰因子的全基因组表型筛选
- 批准号:
8702410 - 财政年份:2014
- 资助金额:
$ 58.18万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 58.18万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 58.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 58.18万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 58.18万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 58.18万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 58.18万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 58.18万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 58.18万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 58.18万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 58.18万 - 项目类别:
Discovery Grants Program - Individual