Decipher Mechano-Chemo-Transduction Pathway and Function in Cardiomyocytes
破译心肌细胞中的机械化学传导途径和功能
基本信息
- 批准号:10317392
- 负责人:
- 金额:$ 76.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAffectBehaviorBiochemicalBiomedical EngineeringBlood CirculationCardiac MyocytesCardiac OutputCardiomyopathiesCell surfaceCellsComplexContractsCouplingDataDiseaseDystroglycanDystrophinElectrophysiology (science)EnvironmentExtracellular MatrixFeedbackFunctional disorderGelGlycoproteinsGoalsGrantHealthHeartHeart DiseasesHomeostasisHydrogelsImageImpairmentIn SituKnock-outKnowledgeLeadLinkMapsMechanical StressMechanicsModelingMolecularMuscleMuscle CellsMuscular DystrophiesMuscular dystrophy cardiomyopathyMutationMyocardiumNitric Oxide Synthase Type IOutcomePathologicPathway interactionsPeripheral ResistancePharmacologyReporterReportingSignal TransductionSkeletal MuscleStressSturnus vulgarisSystemTechnologyTestingTimeTissuesTransgenic OrganismsUtrophinalpha Dystroglycanbaseblood pumpcalmodulin-dependent protein kinase IIdynamic systemglycosylationheart functioninhibitor/antagonistinnovationinnovative technologiesmathematical modelmechanical loadmechanotransductionmultidisciplinarynew technologypredictive modelingpressureresponseviscoelasticity
项目摘要
The heart pumps blood into circulation against systemic vascular resistance; the heart can also sense
mechanical load changes and regulate contractility to maintain cardiac output. The heart’s load adaptivity had
been described by Frank-Starling and Anrep over 108 years ago. The current understanding is that the Anrep
effect upregulates Ca2+ transient to enhance contractility when the cardiomyocyte is contracting under
afterload, which is predominant in pathological pressure overload. However, the mechano-chemo-transduction
(MCT) mechanism that transduces mechanical load to biochemical signals to regulate excitation-Ca2+
signaling-contraction (E-C) coupling in cardiomyocytes remains unresolved. Emerging evidence show that the
load adaptivity resides within single cardiomyocytes. We recently found that the cardiomyocytes contracting in
viscoelastic hydrogels can regulate the Ca2+ transient and contractility in compensatory response to afterload
changes, showing autoregulation of contraction. But the underlying MCT mechanisms are yet to be resolved.
An important clue comes from our mathematical model prediction that the observed autoregulatory behavior
can arise from cell-surface mechanosensors that sense the 3D mechanical stress on cardiomyocytes during
contraction in a 3D viscoelastic environment as in situ. The goals of this grant are 2-fold: first we will decipher
the cell-surface mechanosensor, dystrophin-glycoprotein complex (DGC) and the downstream MCT pathway;
next, we will determine the functional impact of MCT on regulating E-C coupling in the cardiomyocyte under
mechanical load. Our multi-disciplinary team will combine bioengineering, electrophysiology, Ca2+ imaging, and
muscle mechanics to develop innovative technology and achieve three specific aims.
INNOVATION: We will develop new Cell-in-Gel with molecular-tether and stress-reporter (Cell-in-Gel-TS)
technology, which is used to control mechanical load on myocytes during beat-to-beat contraction, report the
stress level, and tether/untether cell surface mechanosensors to probe MCT pathways.
Aim-1: Decipher the MCT pathway from DGC mechanosensor to chemotransducer to E-C coupling molecules.
Aim-2: Determine how mechanical load regulates the excitation-Ca2+ signaling-contraction coupling systems.
Aim-3: Test hypothesis that DGC mutations disrupt the MCT pathway to cause dysregulation of E-C coupling.
Successful outcomes will (A) shift the E-C coupling paradigm from the current feed-forward model to a new
MCT feedback autoregulatory model, (B) open a unifying conceptual framework for understanding the heart’s
intrinsic adaptive response to mechanical load changes in health and diseases, and (C) develop the new Cell-
in-Gel-TS platform to control afterload at single-cell and molecular levels, which can be widely used to study
myocytes under afterload (replacing load-free setting) to mimic pathophysiological loading in 3D myocardium.
1
心脏将血液泵入循环以对抗全身血管阻力;心脏还可以感知
机械负荷变化和调节收缩力以维持心输出量。心脏的负荷适应性
在108年前被弗兰克-斯塔林和安瑞普描述过。目前的理解是,
作用上调Ca 2+瞬变,以增强心肌细胞收缩时,
后负荷,这是占主导地位的病理压力超负荷。然而,机械-化学-转导
(MCT)将机械负荷转换为生化信号以调节兴奋性Ca 2+的机制
心肌细胞中的信号传导-收缩(E-C)偶联仍然没有解决。新出现的证据表明,
负荷适应性存在于单个心肌细胞内。我们最近发现收缩的心肌细胞
粘弹性水凝胶可调节Ca 2+瞬变和对后负荷的代偿性收缩反应
变化,显示收缩的自动调节。但MCT的潜在机制尚未得到解决。
一个重要的线索来自于我们的数学模型预测,
可以由细胞表面机械传感器产生,该传感器在心肌细胞的运动过程中感测心肌细胞上的3D机械应力。
在3D粘弹性环境中的收缩,如在原位。这项补助金的目标有两个方面:首先,我们将破译
细胞表面机械传感器、肌营养不良蛋白-糖蛋白复合物(DGC)和下游MCT通路;
接下来,我们将确定MCT对调节心肌细胞中E-C偶联的功能影响,
机械负荷我们的多学科团队将结合联合收割机生物工程,电生理学,钙离子成像,
肌肉力学发展创新技术,实现三个具体目标。
创新:我们将开发新的Cell-in-Gel分子链和压力报告(Cell-in-Gel-TS)
技术,这是用来控制机械负荷的心肌细胞在心跳到心跳收缩,报告说,
应力水平,以及系留/解开细胞表面机械传感器以探测MCT途径。
目的一:解析MCT从DGC机械传感器到化学转换器再到E-C偶联分子的通路。
目的-2:确定机械负荷如何调节兴奋-Ca 2+信号-收缩耦合系统。
目的-3:检验假设DGC突变破坏MCT通路,导致E-C偶联失调。
成功的结果将(A)将E-C耦合范式从当前的前馈模型转变为新的前馈模型。
MCT反馈自动调节模型(B)为理解心脏的功能提供了一个统一的概念框架。
内在的适应性反应,以机械负荷的变化,在健康和疾病,和(三)发展新的细胞-
In-Gel-TS平台在单细胞和分子水平上控制后负荷,可广泛用于研究
后负荷下的心肌细胞(替代无负荷设置),以模拟3D心肌中的病理生理负荷。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ye Chen-Izu其他文献
Ye Chen-Izu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ye Chen-Izu', 18)}}的其他基金
Mechanical Load Effects on Cardiac Function and Heart Diseases
机械负荷对心脏功能和心脏病的影响
- 批准号:
10573078 - 财政年份:2023
- 资助金额:
$ 76.31万 - 项目类别:
Decipher Mechano-Chemo-Transduction Pathway and Function in Cardiomyocytes
破译心肌细胞中的机械化学传导途径和功能
- 批准号:
10475252 - 财政年份:2021
- 资助金额:
$ 76.31万 - 项目类别:
The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
- 批准号:
9917175 - 财政年份:2019
- 资助金额:
$ 76.31万 - 项目类别:
The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
- 批准号:
10534247 - 财政年份:2019
- 资助金额:
$ 76.31万 - 项目类别:
MECHANICAL LOAD EFFECT ON CARDIAC EXCITATION-CONTRACTION COUPLING
机械负荷对心脏兴奋-收缩耦合的影响
- 批准号:
10063898 - 财政年份:2019
- 资助金额:
$ 76.31万 - 项目类别:
MECHANICAL LOAD EFFECT ON CARDIAC EXCITATION-CONTRACTION COUPLING
机械负荷对心脏兴奋-收缩耦合的影响
- 批准号:
10318152 - 财政年份:2019
- 资助金额:
$ 76.31万 - 项目类别:
The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
- 批准号:
10322047 - 财政年份:2019
- 资助金额:
$ 76.31万 - 项目类别:
The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
- 批准号:
10065520 - 财政年份:2019
- 资助金额:
$ 76.31万 - 项目类别:
Novel Cell-in-Gel System for Mechanotransduction Study at the Single Cell Level
用于单细胞水平机械转导研究的新型凝胶细胞系统
- 批准号:
9118367 - 财政年份:2015
- 资助金额:
$ 76.31万 - 项目类别:
Novel Cell-in-Gel System for Mechanotransduction Study at the Single Cell Level
用于单细胞水平机械转导研究的新型凝胶细胞系统
- 批准号:
9321940 - 财政年份:2015
- 资助金额:
$ 76.31万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 76.31万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 76.31万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 76.31万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 76.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 76.31万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 76.31万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 76.31万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 76.31万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 76.31万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 76.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)