The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
基本信息
- 批准号:10065520
- 负责人:
- 金额:$ 67.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-10 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAreaBehaviorBiologicalCardiacCardiac MyocytesCase StudyCell physiologyCellsCellular biologyContractile ProteinsCouplingDataDimensionsExclusionFeedbackHeartHeart failureHomeostasisImpairmentIon ChannelKnowledgeLinkMapsMathematicsMeasuresMechanical StressMethodologyModelingMolecularMuscle CellsMuscle ContractionNitric OxideOutcomeOutputPathway interactionsPatternProductionReactive Oxygen SpeciesRunningSignal PathwaySignal TransductionStimulusStressStructureSurfaceTestingTimeVentricularWorkconnectomeexperienceexperimental studyheart functionhigh dimensionalitymathematical analysismathematical modelmechanical loadmechanotransductionmodels and simulationnovel strategiespredictive modelingresponsesensorshear stressuptake
项目摘要
Mechanical load on the heart profoundly affects cardiac excitation-contraction (E-C) coupling that governs
heart function. Recent experimental studies have revealed that mechanotransduction mechanisms link to
multiple signaling pathways to modulate the activities of many ion channels, Ca2+ handling molecules, and
contractile proteins, which work in concert to regulate contractile force to compensate for external load
changes. Such autoregulation of contractility requires highly coordinated modulation of many molecules by
mechanotransduction. PROBLEM: Current mathematical modeling of cardiomyocytes often uses one-at-a-
time parameter changes in model simulations. To understand how multiple parameters and molecules change
in a coordinated pattern, however, will require a new mathematical strategy. One-at-a-time parameter changes
cannot address how multiple parameters change in a coordinated way. Studying the coordinated changes
requires simultaneously changing many model parameters but even this does not, by itself, reveal how the
changes are coordinated. INNOVATION: We will develop a new Functional Connectome approach by the
following strategy. (a) Randomly change parameters of many subsystems. Because we make few a priori
assumptions on what subsystems might be involved, this approach can reduce exclusion of some subsystems,
which is important because cellular processes are highly interconnected. (b) From many simulated parameter
combinations, we use experimental data to filter out a small number of subsets that fit all the data. Such a
subset is called an Acceptable Parameter Set (APS). (c) To determine the coordinated changes of
subsystems, we use the Singular Value Decomposition (SVD). SVD factorization of the parameter matrix
shows that the APS often lies in a low-dimensional subspace of the entire high-dimension parameter space.
The linear structure of this subspace gives both the map of connected subsystems and how the subsystems
are modulated coordinately to produce the functional output. We call this connection map the Functional
Connectome. Our interdisciplinary team will combine mathematical modeling with state-of-the-art
experiments to achieve three specific aims: (1) Extend the cardiomyocyte mathematical model to include
mechano-chemo-transduction feedback loop for studying autoregulation of Ca2+ and contractility in response to
mechanical load changes. (2) Develop the Functional Connectome modeling platform to find patterns in myriad
molecular changes. (3) Experimental test of the Functional Connectome predictions in mechanically loaded
cardiomyocytes. SIGNIFICANCE: The outcome of this project will provide a new mathematical platform for
studying coordinated changes in biological cells, which enables finding patterns in myriad molecular changes
by various stimuli, and piece together many data to form a big picture. We will apply the Functional
Connectome to study how mechanical load on cardiomyocyte causes coordinated molecular changes that give
rise to the autoregulation of contractility in the heart.
1
心脏上的机械负荷深刻地影响着支配心脏的兴奋-收缩(E-C)偶联
心脏功能。最近的实验研究表明,机械转导机制与
多条信号通路调节许多离子通道、钙离子调节分子和
收缩蛋白,它们协同工作调节收缩力量以补偿外部负荷
改变。这种收缩能力的自动调节需要许多分子高度协调地调节,通过
机械转导。问题:目前对心肌细胞的数学建模通常使用一次一个-
模型模拟中的时间参数更改。要了解多个参数和分子如何变化
然而,在一个协调的模式下,将需要一个新的数学策略。一次更改一个参数
无法解决多个参数如何协调更改的问题。研究协调变化
需要同时更改许多模型参数,但即使这样,本身也不能揭示
变化是协调一致的。创新:我们将开发一种新的功能性Connectome方法
遵循战略。(A)随机改变多个子系统的参数。因为我们很少先验
假设可能涉及哪些子系统,这种方法可以减少对某些子系统的排除,
这一点很重要,因为细胞过程是高度相互联系的。(B)从多个模拟参数中
组合,我们使用实验数据来筛选出适合所有数据的少量子集。这样的一个
子集称为可接受参数集(APS)。(C)确定协调的变化
子系统,我们使用奇异值分解(SVD)。参数矩阵的奇异值分解
表明APS往往位于整个高维参数空间的低维子空间中。
该子空间的线性结构既给出了相连子系统的映射,也给出了子系统如何
被协调调制以产生功能输出。我们称此连接图为功能图
连接体。我们的跨学科团队将数学建模与最先进的技术相结合
实现三个具体目标的实验:(1)将心肌细胞数学模型扩展到包括
机械力-化学-转导反馈环用于研究钙离子和肌张力的自动调节
机械载荷会发生变化。(2)开发功能性Connectome建模平台,发现万千模式
分子变化。(3)机械载荷下功能连接组预测的实验验证
心肌细胞。意义:该项目的成果将提供一个新的数学平台
研究生物细胞的协调变化,从而能够在无数分子变化中找到模式
通过各种刺激,并将许多数据拼凑成一幅大图。我们将应用泛函
连接组研究心肌细胞机械负荷如何引起协调的分子变化,从而使
上升到心脏收缩能力的自动调节。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ye Chen-Izu其他文献
Ye Chen-Izu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ye Chen-Izu', 18)}}的其他基金
Mechanical Load Effects on Cardiac Function and Heart Diseases
机械负荷对心脏功能和心脏病的影响
- 批准号:
10573078 - 财政年份:2023
- 资助金额:
$ 67.05万 - 项目类别:
Decipher Mechano-Chemo-Transduction Pathway and Function in Cardiomyocytes
破译心肌细胞中的机械化学传导途径和功能
- 批准号:
10317392 - 财政年份:2021
- 资助金额:
$ 67.05万 - 项目类别:
Decipher Mechano-Chemo-Transduction Pathway and Function in Cardiomyocytes
破译心肌细胞中的机械化学传导途径和功能
- 批准号:
10475252 - 财政年份:2021
- 资助金额:
$ 67.05万 - 项目类别:
The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
- 批准号:
9917175 - 财政年份:2019
- 资助金额:
$ 67.05万 - 项目类别:
The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
- 批准号:
10534247 - 财政年份:2019
- 资助金额:
$ 67.05万 - 项目类别:
MECHANICAL LOAD EFFECT ON CARDIAC EXCITATION-CONTRACTION COUPLING
机械负荷对心脏兴奋-收缩耦合的影响
- 批准号:
10063898 - 财政年份:2019
- 资助金额:
$ 67.05万 - 项目类别:
MECHANICAL LOAD EFFECT ON CARDIAC EXCITATION-CONTRACTION COUPLING
机械负荷对心脏兴奋-收缩耦合的影响
- 批准号:
10318152 - 财政年份:2019
- 资助金额:
$ 67.05万 - 项目类别:
The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
- 批准号:
10322047 - 财政年份:2019
- 资助金额:
$ 67.05万 - 项目类别:
Novel Cell-in-Gel System for Mechanotransduction Study at the Single Cell Level
用于单细胞水平机械转导研究的新型凝胶细胞系统
- 批准号:
9118367 - 财政年份:2015
- 资助金额:
$ 67.05万 - 项目类别:
Novel Cell-in-Gel System for Mechanotransduction Study at the Single Cell Level
用于单细胞水平机械转导研究的新型凝胶细胞系统
- 批准号:
9321940 - 财政年份:2015
- 资助金额:
$ 67.05万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 67.05万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 67.05万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 67.05万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 67.05万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 67.05万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 67.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 67.05万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 67.05万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 67.05万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 67.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists