MECHANICAL LOAD EFFECT ON CARDIAC EXCITATION-CONTRACTION COUPLING
机械负荷对心脏兴奋-收缩耦合的影响
基本信息
- 批准号:10063898
- 负责人:
- 金额:$ 63.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAdrenergic AgentsAffectArrhythmiaBlood PressureCardiacCardiac MyocytesCardiac OutputCellsChronicContractsCouplingDataDilated CardiomyopathyElectrophysiology (science)Emotional StressFunctional disorderGelHeartHeart DiseasesHeart failureHydrogelsHypertensionIceImpairmentInvestigationIon ChannelKnowledgeLinkMeasuresMechanical StressMediatingMembraneMethodsModelingMolecularMuscleMuscle CellsMyocardial dysfunctionMyocardiumNitric OxideOryctolagus cuniculusOutcomePathologicPatientsPhysical activityPhysiologicalPropertyReactive Oxygen SpeciesRegulationResearchRoleSarcolemmaSarcoplasmic ReticulumSignal TransductionStressTechniquesTechnologyTestingThinnessTransgenic MiceVentricularWorkbaseblood pumpbody positiondensityexperimental studyinnovationmechanical loadmechanotransductionmouse modelpatch clampresponsetooluptakeviscoelasticityvoltage
项目摘要
ABSTRACT
The heart must adjust its contractile force to counteract the blood pressure changes (due to physical activity,
body position, emotional stress, etc.) to maintain cardiac output. Cardiac muscle cells possess the intrinsic
ability to sense mechanical load and fine-tune contractile force accordingly. Previous work by us and others
found that increasing mechanical loading on muscle strips or single myocytes results in an increase of the
cytosolic Ca2+ transient (CaT) that increases the contractile force to partially compensate for the added
mechanical load. A sustained increase in CaT requires augmenting the Ca2+ content of the sarcoplasmic
reticulum (SR), which must come from a net increase of Ca2+ across the sarcolemma. However, the
mechanism that links mechanical loading to the control of Ca2+ entry remains unknown. Plausible mechanisms
for this net increase include a mechanical load-induced increase of Ca2+ influx through L-type Ca2+ channels
(ICaL) or a decreased efflux from Na+-Ca2+ exchanger (INCX). However, studying how mechanical loading affects
ICaL or INCX has been hampered by the technical difficulty of subjecting myocytes to mechanical loads while
simultaneously doing patch-clamp experiments. Now we have overcome this obstacle. Innovation: Recently
we invented the Patch-Clamp-in-Gel technique that enables us to simultaneously measure membrane voltage
or current, SR or cytosolic Ca2+, and contraction in single myocytes embedded in a viscoelastic hydrogel that
controls mechanical load on the cell. Preliminary data reveal that mechanical load increases ICaL, prolongs the
action potential (AP), and increases SR Ca2+ content in rabbit ventricular myocytes. Therefore we hypothesize
that mechanical load increases Ca2+ entry during AP to elevate the SR Ca2+ content and Ca2+ release that
increases CaT, which can partially compensate for increased mechanical load. While a compensatory
increase in CaT might be beneficial to offset moderate increases in mechanical loading, we further posit that
excessive loading causes SR Ca2+ overload by excessive ICaL increase or INCX decrease, leading to
arrhythmogenic spontaneous Ca2+ release. Failing hearts cannot generate enough force to maintain adequate
cardiac output. We hypothesize that the compensatory increase of CaT with increased load is blunted in HF.
Our interdisciplinary team will develop the new Patch-Clamp-in-Gel technique and test the hypotheses
using ventricular myocytes from healthy and HF rabbit, and transgenic mouse to achieving three specific aims.
(1) Systematically investigate how mechanical load regulates myocyte E-C- coupling during cardiac cycle. (2)
Decipher mechano-electro-transduction effects on ICaL and INCX and Ca2+ entry during AP. (3) Understand how
pathological high load may cause Ca2+ dysregulation and arrhythmogenic activities in HF. The outcome of this
project will elucidate how mechanical load affects cardiac excitation-contraction coupling in compensatory
response to physiological loading, and how mechanotransduction is impaired in heart failure patients to cause
arrhythmias and contractile dysfunction.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ye Chen-Izu其他文献
Ye Chen-Izu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ye Chen-Izu', 18)}}的其他基金
Mechanical Load Effects on Cardiac Function and Heart Diseases
机械负荷对心脏功能和心脏病的影响
- 批准号:
10573078 - 财政年份:2023
- 资助金额:
$ 63.31万 - 项目类别:
Decipher Mechano-Chemo-Transduction Pathway and Function in Cardiomyocytes
破译心肌细胞中的机械化学传导途径和功能
- 批准号:
10317392 - 财政年份:2021
- 资助金额:
$ 63.31万 - 项目类别:
Decipher Mechano-Chemo-Transduction Pathway and Function in Cardiomyocytes
破译心肌细胞中的机械化学传导途径和功能
- 批准号:
10475252 - 财政年份:2021
- 资助金额:
$ 63.31万 - 项目类别:
The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
- 批准号:
9917175 - 财政年份:2019
- 资助金额:
$ 63.31万 - 项目类别:
The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
- 批准号:
10534247 - 财政年份:2019
- 资助金额:
$ 63.31万 - 项目类别:
MECHANICAL LOAD EFFECT ON CARDIAC EXCITATION-CONTRACTION COUPLING
机械负荷对心脏兴奋-收缩耦合的影响
- 批准号:
10318152 - 财政年份:2019
- 资助金额:
$ 63.31万 - 项目类别:
The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
- 批准号:
10322047 - 财政年份:2019
- 资助金额:
$ 63.31万 - 项目类别:
The Functional Connectome of the Mechanically Loaded Cardiomyocyte
机械负荷心肌细胞的功能连接组
- 批准号:
10065520 - 财政年份:2019
- 资助金额:
$ 63.31万 - 项目类别:
Novel Cell-in-Gel System for Mechanotransduction Study at the Single Cell Level
用于单细胞水平机械转导研究的新型凝胶细胞系统
- 批准号:
9118367 - 财政年份:2015
- 资助金额:
$ 63.31万 - 项目类别:
Novel Cell-in-Gel System for Mechanotransduction Study at the Single Cell Level
用于单细胞水平机械转导研究的新型凝胶细胞系统
- 批准号:
9321940 - 财政年份:2015
- 资助金额:
$ 63.31万 - 项目类别:
相似海外基金
Preclinical test for the efficacy of adrenergic agents in treatment of AD
肾上腺素能药物治疗AD疗效的临床前试验
- 批准号:
8358448 - 财政年份:2012
- 资助金额:
$ 63.31万 - 项目类别:
Preclinical test for the efficacy of adrenergic agents in treatment of AD
肾上腺素能药物治疗AD疗效的临床前试验
- 批准号:
8517552 - 财政年份:2012
- 资助金额:
$ 63.31万 - 项目类别:
MODULATING FLUID THERAPY WITH ADRENERGIC AGENTS AND CYCLIC AMP ENHANCERS IN
使用肾上腺素能药物和环放大器增强剂调节液体治疗
- 批准号:
7952159 - 财政年份:2009
- 资助金额:
$ 63.31万 - 项目类别:
THE EFFECT OF BETA-ADRENERGIC AGENTS AND FLUID THERAPY IN HUMANS
β-肾上腺素能药物和液体疗法对人体的影响
- 批准号:
7952152 - 财政年份:2009
- 资助金额:
$ 63.31万 - 项目类别:
MODULATING FLUID THERAPY WITH ADRENERGIC AGENTS AND CYCLIC AMP ENHANCERS IN
使用肾上腺素能药物和环放大器增强剂调节液体治疗
- 批准号:
7719194 - 财政年份:2008
- 资助金额:
$ 63.31万 - 项目类别:
THE EFFECT OF BETA-ADRENERGIC AGENTS AND FLUID THERAPY IN HUMANS
β-肾上腺素能药物和液体疗法对人体的影响
- 批准号:
7605416 - 财政年份:2007
- 资助金额:
$ 63.31万 - 项目类别:
MODULATING FLUID THERAPY WITH ADRENERGIC AGENTS AND CYCLIC AMP ENHANCERS IN
使用肾上腺素能药物和环放大器增强剂调节液体治疗
- 批准号:
7605425 - 财政年份:2007
- 资助金额:
$ 63.31万 - 项目类别:
THE EFFECT OF BETA-ADRENERGIC AGENTS AND FLUID THERAPY IN HUMANS
β-肾上腺素能药物和液体疗法对人体的影响
- 批准号:
7378753 - 财政年份:2006
- 资助金额:
$ 63.31万 - 项目类别:
Adrenergic Agents for Methamphetamine: Outpatient Trials
甲基苯丙胺肾上腺素药物:门诊试验
- 批准号:
6825160 - 财政年份:2004
- 资助金额:
$ 63.31万 - 项目类别:
ADRENERGIC AGENTS FOR CARDIOPULMONARY RESUSCITATION
用于心肺复苏的肾上腺素能药物
- 批准号:
2702283 - 财政年份:1997
- 资助金额:
$ 63.31万 - 项目类别: