Bridging diffusion MRI and chemical tracing for validation and inference of fiber architectures

连接扩散 MRI 和化学示踪以验证和推断纤维结构

基本信息

  • 批准号:
    10318985
  • 负责人:
  • 金额:
    $ 65.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-15 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Project summary: This project will collect a unique, multi-modal, multi-contrast dataset with tracer injections and diffusion MRI in the same macaque brains. We will use this dataset to develop novel algorithms for inferring local fiber architectures from diffusion MRI. The goal is to overcome the limitations of current methods for diffusion orientation reconstruction, which are designed to resolve fiber crossings but not to distinguish between crossings and other configurations, such as branching, turning, fanning, etc. More broadly, the proposed dataset will allow us to investigate organizational principles of brain pathways and to provide a testbed for the neuroimaging community to evaluate the accuracy of diffusion tractography and microstructural modeling techniques. The project is a collaboration between groups with extensive expertise in diffusion MRI methodological development (MGH Martinos Center) and anatomical tracer studies (University of Rochester). We have previously collected high-resolution ex vivo diffusion MRI data on a set of macaque brains that had also received tracer injections. We have recently used these data in an open tractography challenge, with the participation of research teams from around the world. This was the first challenge of its kind to provide diffusion MRI data suitable for all state-of-the-art diffusion reconstruction methods (e.g., multi-shell or Cartesian grid sampling), in addition to providing the tracer injections in the same brains as the MRI scans. Our own preliminary studies and the challenge itself offer several insights into the performance of state-of-the-art tractography methods. For example, our results indicate that, while most tractography methods would require their parameters to be tuned differently to achieve optimal accuracy for different cortical seed regions, there are approaches that are robust across cortical areas. Furthermore, our results suggest that errors occur frequently in areas where the fiber architecture is not well modeled by a crossing. Thus there is a need for novel tractography approaches that go beyond the crossing-fiber paradigm. Here we propose to develop such an approach. Our prior work included injection sites in the frontal, prefrontal, and cingulate cortices only. Here we propose to investigate the extent to which our prior findings generalize across the brain, by performing tracer injections that sample a wider range of cortical areas. Furthermore, we will extend our acquisition protocol to acquire data appropriate not only for tractography, but also for microstructural and myelin mapping. These data will allow us to answer a broader range of questions about tractography, microstructure, and their intersection. Beyond the methodological development proposed in this project, the data will also be an invaluable resource to the neuroimaging community, providing researchers with a framework for the objective assessment of current diffusion MRI analysis methods and identifying areas for improvement to guide the development of next-generation techniques.
项目摘要:该项目将收集一个独特的、多模态的、多对比度的示踪剂注射数据集 和弥散磁共振成像。我们将使用这个数据集来开发新的算法, 从弥散MRI推断局部纤维结构。目标是克服目前方法的局限性 用于扩散方向重建,其设计用于分辨纤维交叉,但不区分 交叉和其他配置之间,如分支,转向,扇形等。更广泛地说, 拟议的数据集将使我们能够研究大脑通路的组织原则,并提供一个 神经影像学社区的试验平台,以评估扩散纤维束成像和显微结构的准确性 建模技术该项目是在扩散磁共振成像方面具有广泛专业知识的团体之间的合作 方法学开发(MGH Martinos中心)和解剖示踪剂研究(罗切斯特大学)。 我们以前收集了一组猕猴大脑的高分辨率离体扩散MRI数据, 也接受了示踪剂注射我们最近将这些数据用于开放式纤维束成像挑战, 来自世界各地的研究团队。这是第一个挑战, 适用于所有现有技术的扩散重建方法的扩散MRI数据(例如,多壳或笛卡尔 网格采样),除了在与MRI扫描相同的大脑中提供示踪剂注射之外。我们自己 初步研究和挑战本身提供了一些见解的性能,国家的最先进的 纤维束成像方法例如,我们的结果表明,虽然大多数纤维束成像方法需要 它们的参数被不同地调整,以实现不同皮层种子区域的最佳精度, 是一种跨皮层区域的方法。此外,我们的研究结果表明, 通常是在纤维结构不能很好地通过交叉建模的区域。因此需要 新型纤维束成像方法,超越了交叉纤维范例。在这里,我们建议开发这样的 一种方法。我们之前的研究只包括额叶、前额叶和扣带皮层的注射部位。这里 我们建议通过以下方式来研究我们先前的发现在大脑中的普遍化程度: 示踪剂注射可以对更大范围的皮层区域进行采样。此外,我们将扩大我们的收购 协议,以获取数据不仅适用于纤维束成像,而且适用于显微结构和髓鞘映射。 这些数据将使我们能够回答有关纤维束成像、微观结构及其 路口除了本项目中提出的方法学发展之外,数据也将是一个 神经影像学界的宝贵资源,为研究人员提供了一个框架, 评估当前的弥散MRI分析方法,并确定需要改进的领域,以指导 下一代技术的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anastasia Yendiki其他文献

Anastasia Yendiki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anastasia Yendiki', 18)}}的其他基金

Bridging Diffusion MRI and Chemical Tracing for Validation and Inference of Fiber Architectures
连接扩散 MRI 和化学示踪以验证和推断纤维结构
  • 批准号:
    10530636
  • 财政年份:
    2020
  • 资助金额:
    $ 65.99万
  • 项目类别:
Multimodal mapping of the neurocircuitry of the human prefrontal cortex
人类前额皮质神经回路的多模态映射
  • 批准号:
    9122980
  • 财政年份:
    2016
  • 资助金额:
    $ 65.99万
  • 项目类别:
Structural Connections Core
结构连接核心
  • 批准号:
    10411712
  • 财政年份:
    2015
  • 资助金额:
    $ 65.99万
  • 项目类别:
Structural Connections Core
结构连接核心
  • 批准号:
    10594021
  • 财政年份:
    2015
  • 资助金额:
    $ 65.99万
  • 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
  • 批准号:
    8292088
  • 财政年份:
    2010
  • 资助金额:
    $ 65.99万
  • 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
  • 批准号:
    8059859
  • 财政年份:
    2010
  • 资助金额:
    $ 65.99万
  • 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
  • 批准号:
    8105518
  • 财政年份:
    2010
  • 资助金额:
    $ 65.99万
  • 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
  • 批准号:
    7361635
  • 财政年份:
    2008
  • 资助金额:
    $ 65.99万
  • 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
  • 批准号:
    7612656
  • 财政年份:
    2008
  • 资助金额:
    $ 65.99万
  • 项目类别:

相似海外基金

AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
  • 批准号:
    22K09863
  • 财政年份:
    2022
  • 资助金额:
    $ 65.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 65.99万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 65.99万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 65.99万
  • 项目类别:
    Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
  • 批准号:
    22650002
  • 财政年份:
    2010
  • 资助金额:
    $ 65.99万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 65.99万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 65.99万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 65.99万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
  • 批准号:
    0218568
  • 财政年份:
    2002
  • 资助金额:
    $ 65.99万
  • 项目类别:
    Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
  • 批准号:
    9404947
  • 财政年份:
    1994
  • 资助金额:
    $ 65.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了