Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
基本信息
- 批准号:8292088
- 负责人:
- 金额:$ 23.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsAlzheimer&aposs DiseaseAnatomyAnisotropyBrainBrain regionCerebrumCorticospinal TractsDataData QualityDevelopmentDiffuseDiffusionDiffusion Magnetic Resonance ImagingDiscriminationDiseaseEvaluationFiberFourier TransformFrequenciesGoalsGoldImageImaging TechniquesImpairmentIndividualInterventionLeadMagnetic ResonanceMagnetic Resonance ImagingManualsMapsMeasurementMeasuresMedicalMethodsModelingMonitorMorphologic artifactsMotorMultiple SclerosisNatureNewborn InfantNoisePathway interactionsPatientsPhysicsPopulationProcessResearchResearch PersonnelResidual stateResolutionScanningSchizophreniaSeriesSideSolutionsStrokeStructureTestingTimeTrainingUncertaintyWaterWeightWorkbaseclinically relevantdata acquisitiondesignimage processingimaging modalityimprovedin vivointerestmagnetic fieldreconstructionstatisticstoolwhite matter
项目摘要
The research proposed herein aims at developing accurate and robust methods for the estimation of both
voxel-wise diffusion representations (diffusivity or anisotropy maps, diffusion tensor or spectrum maps) and
global pathway structure from diffusion-weighted magnetic resonance
(DW-MR) data. Although the algorithms will be widely applicable to diffusion MRI, the application of Interest
is the imaging of cerebral white-matter structures. The proposed approach is probabilistic and it models two
types of uncertainty that are present in DW-MR data: uncertainty introduced by the imaging process in the
form of distortions and noise, and inherent uncertainty In the structures to be reconstructed due to individual
variability in the underlying anatomy. The former will be addressed by accurate modeling of diffusion MR
physics, including the effects of magnetic field inhomogeneities, eddy currents, and noise. The latter will be
addressed by rich models of white-matter pathway anatomy, obtained by training the model on a set of
subjects where major pathways have been defined manually. Cun'ently estimation of diffusion measures is
suboptimal in that it is based on distorted images that are reconstructed without consideration for the
underiying MR physics and then corrected for the distortions approximately in a series of post-processing
steps. In addition reconstruction of white-matter pathways is labor-intensive
because of the need for manual intervention to constrain the solution space and guide the tractography with
neuroanatomical expertise. By addressing these issues the proposed project will make estimates of diffusion
measures more accurate. It will also automate the reconstruction of white-matter pathways, making such
studies practical even for large numbers of subjects. The proposed methods are being developed primarily to
address the artifacts present at the data quality that is typical of routine in vivo studies. Thus we will evaluate
and optimize our approach on such data. In addition, we will validate our methods on ex vivo brain
acquisitions, where results from high-resolution, high-SNR images acquired in long scans can be used as a
gold standard for comparison to results from routine-quality images.
本文提出的研究旨在开发准确和鲁棒的方法来估计两者
逐体素扩散表示(扩散率或各向异性图、扩散张量或频谱图),以及
扩散加权磁共振的全局通路结构
(DW-MR)数据。虽然该算法将广泛适用于扩散MRI,但感兴趣的应用
是大脑白质结构的成像。所提出的方法是概率性的,它模拟了两个
DW-MR数据中存在的不确定性类型:
失真和噪声的形式,以及由于个体原因而导致的待重建结构中的固有不确定性,
潜在解剖结构的变异性。前者将通过扩散MR的精确建模来解决
物理学,包括磁场不均匀性、涡流和噪声的影响。后者将
通过丰富的白质通路解剖模型来解决,通过在一组
主要路径已手动定义的科目。扩散测度的当前估计是
次优,因为它是基于在不考虑
然后在一系列后处理中近似地校正失真
步此外,白质通路的重建是劳动密集型的
由于需要人工干预来限制解决方案空间并引导纤维束成像
神经解剖学专业知识。通过解决这些问题,拟议的项目将对扩散进行估计
测量更准确。它还将自动重建白质通路,
即使对大量的科目也是实用的。正在制定的拟议方法主要是为了
解决常规体内研究中典型的数据质量问题。因此,我们将评估
并优化我们处理这些数据的方法。此外,我们将在离体脑上验证我们的方法
采集,其中长扫描中采集的高分辨率、高SNR图像的结果可用作
与常规质量图像结果进行比较的金标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anastasia Yendiki其他文献
Anastasia Yendiki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anastasia Yendiki', 18)}}的其他基金
Bridging diffusion MRI and chemical tracing for validation and inference of fiber architectures
连接扩散 MRI 和化学示踪以验证和推断纤维结构
- 批准号:
10318985 - 财政年份:2020
- 资助金额:
$ 23.29万 - 项目类别:
Bridging Diffusion MRI and Chemical Tracing for Validation and Inference of Fiber Architectures
连接扩散 MRI 和化学示踪以验证和推断纤维结构
- 批准号:
10530636 - 财政年份:2020
- 资助金额:
$ 23.29万 - 项目类别:
Multimodal mapping of the neurocircuitry of the human prefrontal cortex
人类前额皮质神经回路的多模态映射
- 批准号:
9122980 - 财政年份:2016
- 资助金额:
$ 23.29万 - 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
- 批准号:
8059859 - 财政年份:2010
- 资助金额:
$ 23.29万 - 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
- 批准号:
8105518 - 财政年份:2010
- 资助金额:
$ 23.29万 - 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
- 批准号:
7361635 - 财政年份:2008
- 资助金额:
$ 23.29万 - 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
- 批准号:
7612656 - 财政年份:2008
- 资助金额:
$ 23.29万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 23.29万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 23.29万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 23.29万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 23.29万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 23.29万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 23.29万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 23.29万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 23.29万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 23.29万 - 项目类别:
Research Grant