Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
基本信息
- 批准号:7612656
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-01 至 2010-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAlzheimer&aposs DiseaseAnisotropyAreaAwardBrainBrain regionCerebrumConsultationsCorticospinal TractsDataData AnalysesDevelopmentDevelopment PlansDiffuseDiffusionDiffusion Magnetic Resonance ImagingDiscriminationDiseaseEvaluationFiberFourier TransformFrequenciesGoalsGoldImageImaging TechniquesImpairmentInstitutionLeadMagnetic ResonanceMagnetic Resonance ImagingMapsMeasurementMeasuresMedicalMedical ImagingMedicineMentorsMethodsModalityModelingMonitorMotorMultiple SclerosisNatureNeurosciencesNewborn InfantNoisePatientsPhasePhysicsPopulationProcessPublic HealthRelative (related person)ResearchResearch PersonnelResearch Project SummariesResidual stateResolutionSchizophreniaSideSolutionsStagingStrokeStructureTestingTimeTrainingTranslatingWaterWeightWorkbasebioimagingcareercareer developmentclinically relevantdata acquisitiondata modelingdesigngraduate studentimage processingimaging modalityimprovedin vivointerestmagnetic fieldmeetingsprogramsreconstructionskillsstatisticstomographytoolwhite matter
项目摘要
DESCRIPTION (provided by applicant):
Project summary: The research proposed herein aims at obtaining robust estimates of diffusion representations (images, tensors, spectra) from diffusion-weighted magnetic resonance (MR) data, by compensating for the high levels of noise and distortions in the data. Although the algorithms will be widely applicable to diffusion MRI, the application of interest is the imaging of cerebral white-matter structures. The proposed approach is that of a penalized likelihood (PL) framework, where the diffusion representations are estimated by maximizing an objective function that consists of a likelihood term that fits the solution to the raw MR data plus a regularization term that penalizes overly noisy solutions. The algorithms will utilize the raw time-domain data from the scanner, avoiding the oversimplified Fourier transform data model. The first components of the framework, involving a PL approach to tensor estimation with magnetic field inhomogeneity correction, are being prototyped and will be completed during the mentored phase of the award. In later stages, these components will be incorporated in diffusion spectrum estimation. In parallel to development, high-resolution ex vivo data will be used as a gold standard to evaluate the methods and optimize the relative weighting of the likelihood and regularization terms, i.e., the amount of smoothing. The project fits the candidate's long-term career goal of establishing a high-quality independent research program on inverse problems in medical imaging that spans different modalities. It will also facilitate the candidate's immediate goals of becoming an expert in diffusion MR data analysis and advancing this field by translating the skills acquired in her previous work in statistical reconstruction for emission tomography. The mentored phase will be performed at the MGH/Harvard/MIT Martinos Center for Biomedical Imaging. The candidate will take advantage of the cutting-edge MRI facilities and expertise at the Center, as well as the world-class educational opportunities at its collaborating institutions. Her career development plan includes training in MR data acquisition; consultations with experts of the field; coursework in MR physics and neuroscience; seminars and scientific meetings. As part of launching her own independent research program, the candidate will mentor a graduate student who will be expected to contribute to this project. Relevance: Information extracted from diffusion-weighted MR data is used in medicine, e.g., to monitor brain function in stroke patients; to detect the effects of diseases such as schizophrenia, multiple sclerosis and Alzheimer's; to assess newborn brain development; and to research connectivity of brain regions. The long- term objective of this work is to develop algorithms that enhance the quality of the measures estimated from diffusion-weighted MR data. As such, it has the potential to benefit this wide and growing range of medical applications and promote important areas of public health.
描述(由申请人提供):
项目摘要:本文提出的研究旨在通过补偿数据中的较高噪声和扭曲水平,从扩散加权磁共振(MR)数据中获取从扩散加权磁共振(MR)数据的扩散表示(图像,张量,光谱)的可靠估计。尽管该算法将广泛适用于扩散MRI,但感兴趣的应用是脑白物结构的成像。所提出的方法是惩罚的可能性(PL)框架,其中通过最大化的目标函数来估算扩散表示形式,该目标函数由可能性术语组成,该术语适合原始MR数据和正规化术语,该术语对过于噪声的解决方案进行了惩罚。该算法将利用扫描仪的原始时间域数据,避免过度简化的傅立叶变换数据模型。该框架的第一个组件涉及使用磁场不均匀校正的PL方法进行张量估计的方法,该组件是原型的,并将在奖励的指导阶段完成。在以后的阶段,这些组件将纳入扩散光谱估计中。与开发同时,高分辨率离体数据将用作评估方法并优化可能性和正则化项(即平滑量)的相对权重的黄金标准。该项目符合候选人的长期职业目标,即建立有关跨越不同方式的医学成像中的相反问题的高质量独立研究计划。这还将促进候选人成为扩散MR数据分析专家的直接目标,并通过翻译她先前在统计重建中获得排放层析成像的技能来推进这一领域。指导阶段将在MGH/Harvard/MIT Martinos生物医学成像中心进行。候选人将利用该中心的尖端MRI设施和专业知识,以及其合作机构的世界一流的教育机会。她的职业发展计划包括MR数据获取的培训;与该领域的专家进行磋商; MR物理学和神经科学课程;研讨会和科学会议。作为启动自己的独立研究计划的一部分,候选人将指导一名研究生,他们有望为该项目做出贡献。相关性:从扩散加权的MR数据中提取的信息用于医学中,例如监测中风患者的脑功能;检测精神分裂症,多发性硬化症和阿尔茨海默氏病的疾病的影响;评估新生儿的大脑发育;并研究大脑区域的连通性。这项工作的长期目标是开发算法,以增强根据扩散加权MR数据估计的度量的质量。因此,它有可能受益于广泛而不断增长的医疗应用,并促进公共卫生的重要领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anastasia Yendiki其他文献
Anastasia Yendiki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anastasia Yendiki', 18)}}的其他基金
Bridging diffusion MRI and chemical tracing for validation and inference of fiber architectures
连接扩散 MRI 和化学示踪以验证和推断纤维结构
- 批准号:
10318985 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Bridging Diffusion MRI and Chemical Tracing for Validation and Inference of Fiber Architectures
连接扩散 MRI 和化学示踪以验证和推断纤维结构
- 批准号:
10530636 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Multimodal mapping of the neurocircuitry of the human prefrontal cortex
人类前额皮质神经回路的多模态映射
- 批准号:
9122980 - 财政年份:2016
- 资助金额:
$ 9万 - 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
- 批准号:
8292088 - 财政年份:2010
- 资助金额:
$ 9万 - 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
- 批准号:
8059859 - 财政年份:2010
- 资助金额:
$ 9万 - 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
- 批准号:
8105518 - 财政年份:2010
- 资助金额:
$ 9万 - 项目类别:
Penalized-likelihood Algorithms for Time-Domain MR Diffusion Measure Estimation
时域MR扩散测度估计的惩罚似然算法
- 批准号:
7361635 - 财政年份:2008
- 资助金额:
$ 9万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Developing a novel EEG-based index for evaluating amyloid and tau burden in Alzheimer's Disease
开发一种基于脑电图的新型指数来评估阿尔茨海默病中淀粉样蛋白和 tau 蛋白的负担
- 批准号:
10602059 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Integrating Genetic, Neuroimaging, Transcriptomic, and Clinical Risk Factors as Multivariate Predictors of Cognitive Deterioration in Alzheimer's Disease.
整合遗传、神经影像、转录组和临床风险因素作为阿尔茨海默病认知恶化的多变量预测因子。
- 批准号:
10673857 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别: