Multi-Modal Wireless COVID Monitoring & Infection Alerts for Concentrated Populations
多模式无线新冠肺炎监测
基本信息
- 批准号:10320756
- 负责人:
- 金额:$ 110.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-21 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAlgorithmsArchitectureCOVID detectionCOVID diagnosticCOVID testCOVID testingCOVID-19 pandemicCaringCellular PhoneCharacteristicsClientClinicClinicalClinical DataCommunicable DiseasesComplexDataData AnalysesData SetDetectionDevelopmentDevicesDiagnostic SensitivityDiagnostic testsDialysis procedureDisabled PersonsDiseaseDisease OutbreaksDisease SurveillanceEarly DiagnosisEffectivenessEngineeringEnrollmentEnsureEpidemiologyEventFiltrationFrequenciesGenerationsHealthHeart RateIndividualInfectionInformed ConsentInfrastructureInfusion proceduresInstitutional Review BoardsLeadLogisticsMachine LearningMedicalMethodsMinorityModelingMonitorMorbidity - disease rateNatureNursing HomesOutcomePathologicPatient RecruitmentsPatient Self-ReportPatientsPerformancePersonsPoliciesPopulationPrisonsPrivacyProcessRecommendationRecording of previous eventsRehabilitation therapyReportingResidential FacilitiesResourcesRiskSchoolsSecureSecuritySensitivity and SpecificityServicesSevere Acute Respiratory SyndromeSignal TransductionSiteSocietiesStructureSurveillance MethodsSymptomsSystemSystems DevelopmentTestingTimeViralWeightWorkaerosolizedbasechemotherapycomorbiditycoronavirus diseasedashboarddata acquisitiondemographicsdesigndetection platformdigital healthdrug rehabilitationfitbitfitnesshigher educationimprovedinteroperabilitymachine learning algorithmmeetingsmortalitymultimodalityoperationpandemic diseaserehabilitation serviceremote health careresponsesmartphone Applicationsocioeconomicsstemsurveillance datasurveillance studytransmission processtrendwearable devicewearable sensor technologywireless
项目摘要
Multi-Modal Wireless COVID Monitoring & Infection Alerts for Concentrated Populations
Abstract: The high aerosolized transmissibility of COVID, long asymptomatic incubation period,
and highly variable presentation attributes of the COVID pandemic have proven challenging in
many settings where patchwork pandemic responses have disproportionately negatively
impacted vulnerable socioeconomic, minority, and disabled sub-populations. Unfortunately, these
dire trends are only made more acute in settings that feature populations with limited mobility and
little to no ability to self-isolate (dense concentrated populations [DCPs]), such as residential
nursing homes, schools, drug rehabilitation services, prison and psychiatric facility populations,
and high-frequency essential medical services, such as chemotherapy infusion clinics or dialysis
units. In these DCP settings, limited diagnostic testing, prolonged indoor contact, limitations in
cleaning and filtration capacities, support staff shortages, pre-existing comorbidities, and lack of
effective infectious disease surveillance systems all collude to drive an increased COVID burden
in DCPs. From this, it is clear that alternative detection strategies for DCPs are urgently needed
to improve local capacity to monitor COVID outbreaks, mitigate their spread, and thus reduce
inequitable disease and mortality burdens in these under-resourced and often overcrowded
settings. In previous work, we developed a first generation detection system using heart rate data
from commercially-available Fitbit Ionic wearable devices to detect the onset of COVID and other
infectious diseases up to 10 days before users self-reported symptom onset (overall sensitivity
67% prior to symptom onset). Here, we propose to further develop this system for the improved
detection of COVID and other infectious diseases in DCPs using existing wearable fitness devices
in a wireless and interoperable digital health framework that centralizes all wearable-derived data
on PHD while tailoring its presentation and health event alert system to the IT capabilities and
needs of each DCP setting. In this, not only will we adapt our existing infection detection
algorithms for each DCP’s particular baseline characteristics, IT infrastructure, and needs, but
also use incoming data to further optimize the performance of those algorithms for continuous
improvement in the sensitivity, specificity, and alert lead time for COVID onset. This will quickly
enable under-resourced DCP support staff to access and use world-class COVID surveillance
data in identifying individual infection events, implementing isolation, cleaning, and testing
policies, and minimizing transmission, thus reducing the burden of COVID in DCP settings and
reducing DCP morbidity and mortality overall.
针对集中人群的多模式无线新冠肺炎监测和感染警报
摘要:新冠肺炎气溶胶传播能力强、无症状潜伏期长、
事实证明,新冠病毒大流行的高度可变的表现特征具有挑战性
在许多情况下,拼凑的流行病应对措施产生了不成比例的负面影响
影响了社会经济弱势群体、少数群体和残疾人群体。不幸的是,这些
在人口流动性有限和
几乎没有能力自我隔离(人口密集 [DCP]),例如住宅区
疗养院、学校、戒毒康复服务机构、监狱和精神病院的人群,
以及高频基本医疗服务,例如化疗输液诊所或透析
单位。在这些 DCP 环境中,有限的诊断测试、长时间的室内接触、限制
清洁和过滤能力、支持人员短缺、已有的合并症以及缺乏
有效的传染病监测系统共同导致新冠肺炎负担增加
在 DCP 中。由此可见,迫切需要针对 DCP 的替代检测策略
提高当地监测新冠疫情爆发、减缓其传播的能力,从而减少
在资源不足且经常过度拥挤的地区,疾病和死亡负担不公平
设置。在之前的工作中,我们开发了第一代使用心率数据的检测系统
从市售的 Fitbit Ionic 可穿戴设备检测新冠肺炎和其他疾病的发作
用户自我报告症状出现前 10 天的传染病(总体敏感性
67% 出现症状前)。在此,我们建议进一步开发该系统,以提高
使用现有的可穿戴健身设备检测 DCP 中的新冠肺炎和其他传染病
在无线和可互操作的数字健康框架中,集中所有可穿戴设备衍生的数据
在 PHD 上,同时根据 IT 能力定制其演示和健康事件警报系统
每个 DCP 设置的需要。在这方面,我们不仅会调整现有的感染检测
针对每个 DCP 的特定基线特征、IT 基础设施和需求的算法,但是
还使用传入数据进一步优化这些算法的性能,以实现连续
提高新冠肺炎发病的敏感性、特异性和警报提前时间。这会很快
使资源不足的 DCP 支持人员能够访问和使用世界一流的 COVID 监控
识别个体感染事件、实施隔离、清洁和测试的数据
政策,并最大限度地减少传播,从而减轻 DCP 环境中的新冠病毒负担
总体降低 DCP 发病率和死亡率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL P. SNYDER其他文献
MICHAEL P. SNYDER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL P. SNYDER', 18)}}的其他基金
Precancer Atlas of Familial Adenomatous Polyposis
家族性腺瘤性息肉病癌前图谱
- 批准号:
10900834 - 财政年份:2023
- 资助金额:
$ 110.58万 - 项目类别:
PRODUCTION CENTER FOR MAPPING REGULATORY REGIONS OF THE HUMAN GENOME
人类基因组监管区域图谱制作中心
- 批准号:
10241080 - 财政年份:2021
- 资助金额:
$ 110.58万 - 项目类别:
The Chromium Connect, an integrated and robotic system to automate library preparation for single-cell RNA-Seq
Chromium Connect,一个集成的机器人系统,用于自动进行单细胞 RNA 测序的文库制备
- 批准号:
10171302 - 财政年份:2021
- 资助金额:
$ 110.58万 - 项目类别:
Identifying Multidimensional Omics Profiles Associated with Cardiovascular and Pulmonary Responses to Chronic and Acute Air Pollution Exposure (Project 2) for AIRHEALTH Study
确定与慢性和急性空气污染暴露的心血管和肺部反应相关的多维组学概况(项目 2),用于空气健康研究
- 批准号:
10460331 - 财政年份:2021
- 资助金额:
$ 110.58万 - 项目类别:
Identifying Multidimensional Omics Profiles Associated with Cardiovascular and Pulmonary Responses to Chronic and Acute Air Pollution Exposure (Project 2) for AIRHEALTH Study
确定与慢性和急性空气污染暴露的心血管和肺部反应相关的多维组学概况(项目 2),用于空气健康研究
- 批准号:
10269335 - 财政年份:2021
- 资助金额:
$ 110.58万 - 项目类别:
Multi-Modal Wireless COVID Monitoring & Infection Alerts for Concentrated Populations
多模式无线新冠肺炎监测
- 批准号:
10594946 - 财政年份:2020
- 资助金额:
$ 110.58万 - 项目类别:
Multi-Modal Wireless COVID Monitoring & Infection Alerts for Concentrated Populations
多模式无线新冠肺炎监测
- 批准号:
10274232 - 财政年份:2020
- 资助金额:
$ 110.58万 - 项目类别:
Genomics Diversity Summer Program (GDSP) at Stanford
斯坦福大学基因组多样性暑期项目 (GDSP)
- 批准号:
10408049 - 财政年份:2019
- 资助金额:
$ 110.58万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 110.58万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 110.58万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 110.58万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 110.58万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 110.58万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 110.58万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 110.58万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 110.58万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 110.58万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 110.58万 - 项目类别:
Standard Grant














{{item.name}}会员




