Multi-Modal Wireless COVID Monitoring & Infection Alerts for Concentrated Populations

多模式无线新冠肺炎监测

基本信息

  • 批准号:
    10594946
  • 负责人:
  • 金额:
    $ 110.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-21 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Multi-Modal Wireless COVID Monitoring & Infection Alerts for Concentrated Populations Abstract: The high aerosolized transmissibility of COVID, long asymptomatic incubation period, and highly variable presentation attributes of the COVID pandemic have proven challenging in many settings where patchwork pandemic responses have disproportionately negatively impacted vulnerable socioeconomic, minority, and disabled sub-populations. Unfortunately, these dire trends are only made more acute in settings that feature populations with limited mobility and little to no ability to self-isolate (dense concentrated populations [DCPs]), such as residential nursing homes, schools, drug rehabilitation services, prison and psychiatric facility populations, and high-frequency essential medical services, such as chemotherapy infusion clinics or dialysis units. In these DCP settings, limited diagnostic testing, prolonged indoor contact, limitations in cleaning and filtration capacities, support staff shortages, pre-existing comorbidities, and lack of effective infectious disease surveillance systems all collude to drive an increased COVID burden in DCPs. From this, it is clear that alternative detection strategies for DCPs are urgently needed to improve local capacity to monitor COVID outbreaks, mitigate their spread, and thus reduce inequitable disease and mortality burdens in these under-resourced and often overcrowded settings. In previous work, we developed a first generation detection system using heart rate data from commercially-available Fitbit Ionic wearable devices to detect the onset of COVID and other infectious diseases up to 10 days before users self-reported symptom onset (overall sensitivity 67% prior to symptom onset). Here, we propose to further develop this system for the improved detection of COVID and other infectious diseases in DCPs using existing wearable fitness devices in a wireless and interoperable digital health framework that centralizes all wearable-derived data on PHD while tailoring its presentation and health event alert system to the IT capabilities and needs of each DCP setting. In this, not only will we adapt our existing infection detection algorithms for each DCP’s particular baseline characteristics, IT infrastructure, and needs, but also use incoming data to further optimize the performance of those algorithms for continuous improvement in the sensitivity, specificity, and alert lead time for COVID onset. This will quickly enable under-resourced DCP support staff to access and use world-class COVID surveillance data in identifying individual infection events, implementing isolation, cleaning, and testing policies, and minimizing transmission, thus reducing the burden of COVID in DCP settings and reducing DCP morbidity and mortality overall.
针对集中人群的多模态无线COVID监测和感染警报

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Performance effectiveness of vital parameter combinations for early warning of sepsis-an exhaustive study using machine learning.
  • DOI:
    10.1093/jamiaopen/ooac080
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Rangan, Ekanath Srihari;Pathinarupothi, Rahul Krishnan;Anand, Kanwaljeet J. S.;Snyder, Michael P.
  • 通讯作者:
    Snyder, Michael P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL P. SNYDER其他文献

MICHAEL P. SNYDER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL P. SNYDER', 18)}}的其他基金

Precancer Atlas of Familial Adenomatous Polyposis
家族性腺瘤性息肉病癌前图谱
  • 批准号:
    10900834
  • 财政年份:
    2023
  • 资助金额:
    $ 110.58万
  • 项目类别:
Organ Specific Project
器官特定项目
  • 批准号:
    10709580
  • 财政年份:
    2022
  • 资助金额:
    $ 110.58万
  • 项目类别:
Organ Specific Project
器官特定项目
  • 批准号:
    10531083
  • 财政年份:
    2022
  • 资助金额:
    $ 110.58万
  • 项目类别:
PRODUCTION CENTER FOR MAPPING REGULATORY REGIONS OF THE HUMAN GENOME
人类基因组监管区域图谱制作中心
  • 批准号:
    10241080
  • 财政年份:
    2021
  • 资助金额:
    $ 110.58万
  • 项目类别:
The Chromium Connect, an integrated and robotic system to automate library preparation for single-cell RNA-Seq
Chromium Connect,一个集成的机器人系统,用于自动进行单细胞 RNA 测序的文库制备
  • 批准号:
    10171302
  • 财政年份:
    2021
  • 资助金额:
    $ 110.58万
  • 项目类别:
Identifying Multidimensional Omics Profiles Associated with Cardiovascular and Pulmonary Responses to Chronic and Acute Air Pollution Exposure (Project 2) for AIRHEALTH Study
确定与慢性和急性空气污染暴露的心血管和肺部反应相关的多维组学概况(项目 2),用于空气健康研究
  • 批准号:
    10460331
  • 财政年份:
    2021
  • 资助金额:
    $ 110.58万
  • 项目类别:
Identifying Multidimensional Omics Profiles Associated with Cardiovascular and Pulmonary Responses to Chronic and Acute Air Pollution Exposure (Project 2) for AIRHEALTH Study
确定与慢性和急性空气污染暴露的心血管和肺部反应相关的多维组学概况(项目 2),用于空气健康研究
  • 批准号:
    10269335
  • 财政年份:
    2021
  • 资助金额:
    $ 110.58万
  • 项目类别:
Multi-Modal Wireless COVID Monitoring & Infection Alerts for Concentrated Populations
多模式无线新冠肺炎监测
  • 批准号:
    10320756
  • 财政年份:
    2020
  • 资助金额:
    $ 110.58万
  • 项目类别:
Multi-Modal Wireless COVID Monitoring & Infection Alerts for Concentrated Populations
多模式无线新冠肺炎监测
  • 批准号:
    10274232
  • 财政年份:
    2020
  • 资助金额:
    $ 110.58万
  • 项目类别:
Genomics Diversity Summer Program (GDSP) at Stanford
斯坦福大学基因组多样性暑期项目 (GDSP)
  • 批准号:
    10408049
  • 财政年份:
    2019
  • 资助金额:
    $ 110.58万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 110.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 110.58万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 110.58万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 110.58万
  • 项目类别:
    Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 110.58万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 110.58万
  • 项目类别:
    Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
  • 批准号:
    541812-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 110.58万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 110.58万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 110.58万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759807
  • 财政年份:
    2018
  • 资助金额:
    $ 110.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了