Low-Profile 3D-Printed Radiopaque Bioresorbable Vascular Scaffolds
薄型 3D 打印不透射线生物可吸收血管支架
基本信息
- 批准号:10329908
- 负责人:
- 金额:$ 67.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAntioxidantsArteriesAtherosclerosisBiocompatible MaterialsBiologyBlood VesselsBlood flowCaliberCardiacCardiologyCardiovascular systemCitratesClinical ResearchCoagulation ProcessCoronary ArteriosclerosisCoronary arteryDevicesDiabetes MellitusDimensionsDrug Delivery SystemsEndotheliumEpidemicEventFDA approvedFamily suidaeFormulationHealth Care CostsHumanImageIn VitroIncidenceInflammationInkLiquid substanceMechanicsMetabolic syndromeMetalsModelingMorbidity - disease rateOperative Surgical ProceduresOryctolagus cuniculusOutcomePatientsPeripheral arterial diseasePersonsPharmaceutical PreparationsPolymersProceduresProductionPropertyResearchResearch ProposalsResidual stateRiskSDZ RADSafetyScienceStentsTechniquesTechnologyThe SunThickThrombosisTimeTissuesTreatment outcomeWithdrawalbasebiodegradable polymerbiomaterial compatibilitycostdesigndiabeticdrug standardhemocompatibilityiliac arteryimproved outcomein vivomechanical propertiesmortalitymultidisciplinaryporcine modelpreventrestenosisscaffoldthrombogenesisvasomotion
项目摘要
PROJECT SUMMARY
Atherosclerotic coronary artery disease (CAD) and peripheral artery disease (PAD) are responsible for
significant morbidity, mortality, and high healthcare costs in the USA. This problem will continue to grow due to
the diabetes epidemic as people with diabetes are at increased risk of developing atherosclerosis and less
likely to have favorable treatment outcomes. Endovascular therapies such as placement of a metal stent that
has been dilated by a balloon will open the blockage and restore blood flow. However, these therapies are
plagued by relatively high restenosis rates, which have been attributed to the permanent presence of the stent.
Polymeric bioresorbable vascular scaffolds (BVSs) have emerged as a potential solution to these problems by
providing initial support to prevent recoil and slowly degrading to restore vasomotion and eliminate residual
foreign materials that may contribute to restenosis. However, polymeric BVSs are difficult to fabricate (making
them costly with limited design control) and are made from polymers such as poly(L-lactide) that are
thrombogenic and cause oxidative tissue damage resulting in exacerbated inflammation. In addition, as in the
case of the FDA-approved BVS Absorb GT1 from Abbott Vascular, the strut thickness has to be greater than
150 μm for the scaffold to have sufficient strength to prevent vessel recoil and to accommodate a polymer
coating that contains an anti-restenotic drug to prevent stent re-occlusion. Clinical studies suggest that this
strut thickness, which is 2 times larger than that of bare metal stents, leads to a high incidence of thrombosis in
small-diameter arteries (<2.5 mm) and major adverse cardiac events, limiting the wide spread use of these
devices due to their large profile. The Ameer and Sun research teams have been developing a liquid citrate-
based biomaterial (CBB) that is compatible with a 3D printing technique referred to as micro continuous liquid
interface production (μCLIP). CBBs, which are degradable, have been shown to be thromboresistant and
antioxidant. These properties are desirable for vascular stents. The objective of this research proposal is to
develop a low-profile, drug-eluting, biocompatible and mechanically functional citrate-based BVS. We
hypothesize that a low-profile citrate-based BVS fabricated via μCLIP will perform better than the large-profile
Absorb GT1 BVS in vivo. The specific aims are to: 1) Characterize, in vitro and in vivo in a rabbit model, low-
profile drug-eluting BVSs fabricated using μCLIP, and 2) Assess the safety and efficacy of 3D-printed, drug-
eluting BVSs in atherosclerotic swine with metabolic syndrome. Specifically, we will investigate the patency,
biocompatibility, and resorption of the BVS in coronary arteries of the Ossabaw miniature pig, which
recapitulates human coronary atherosclerosis and metabolic syndrome.
项目总结
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conformal Geometry and Multimaterial Additive Manufacturing through Freeform Transformation of Building Layers.
- DOI:10.1002/adma.202005672
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Huang J;Ware HOT;Hai R;Shao G;Sun C
- 通讯作者:Sun C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guillermo Antonio Ameer其他文献
Guillermo Antonio Ameer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guillermo Antonio Ameer', 18)}}的其他基金
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10641321 - 财政年份:2021
- 资助金额:
$ 67.7万 - 项目类别:
Telemetric Regenerative Bandage for Accelerating Wound Healing
用于加速伤口愈合的遥测再生绷带
- 批准号:
10663343 - 财政年份:2021
- 资助金额:
$ 67.7万 - 项目类别:
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10206938 - 财政年份:2021
- 资助金额:
$ 67.7万 - 项目类别:
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10424463 - 财政年份:2021
- 资助金额:
$ 67.7万 - 项目类别:
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10689787 - 财政年份:2021
- 资助金额:
$ 67.7万 - 项目类别:
Telemetric Regenerative Bandage for Accelerating Wound Healing
用于加速伤口愈合的遥测再生绷带
- 批准号:
10346507 - 财政年份:2021
- 资助金额:
$ 67.7万 - 项目类别:
Low-Profile 3D-Printed Radiopaque Bioresorbable Vascular Scaffolds
薄型 3D 打印不透射线生物可吸收血管支架
- 批准号:
10093122 - 财政年份:2019
- 资助金额:
$ 67.7万 - 项目类别:
Developing a SMART scaffold for bladder augmentation
开发用于膀胱扩张的 SMART 支架
- 批准号:
10429930 - 财政年份:2019
- 资助金额:
$ 67.7万 - 项目类别:
Transarterial Immunomodulatory Embolization: A novel approach to cancer therapy
经动脉免疫调节栓塞:癌症治疗的新方法
- 批准号:
9555090 - 财政年份:2016
- 资助金额:
$ 67.7万 - 项目类别:
Preclinical Investigation of a Bioengineered Vascular Graft
生物工程血管移植物的临床前研究
- 批准号:
8897878 - 财政年份:2013
- 资助金额:
$ 67.7万 - 项目类别:
相似海外基金
Enhancing gamete cryoprotective properties of graphene oxide by dual functionalization with antioxidants and non-penetrating cryoprotectant molecules
通过抗氧化剂和非渗透性冷冻保护剂分子的双重功能化增强氧化石墨烯的配子冷冻保护特性
- 批准号:
24K18002 - 财政年份:2024
- 资助金额:
$ 67.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SBIR Phase I: Sustainable antioxidants for industrial process fluids
SBIR 第一阶段:工业过程流体的可持续抗氧化剂
- 批准号:
2222215 - 财政年份:2023
- 资助金额:
$ 67.7万 - 项目类别:
Standard Grant
Development of a new bone augmentation method that enables long-term survival and long-term functional expression of transplanted cells by antioxidants
开发一种新的骨增强方法,通过抗氧化剂使移植细胞能够长期存活和长期功能表达
- 批准号:
23K09272 - 财政年份:2023
- 资助金额:
$ 67.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Invasive Probing Cellular Oxidative Stress and Antioxidants Therapeutic Effectiveness
非侵入性探测细胞氧化应激和抗氧化剂的治疗效果
- 批准号:
10652764 - 财政年份:2023
- 资助金额:
$ 67.7万 - 项目类别:
Mitochondria-targeting Novel Cationic Hydrazone Antioxidants for the Treatment of Preeclampsia
线粒体靶向新型阳离子腙抗氧化剂用于治疗先兆子痫
- 批准号:
10730652 - 财政年份:2023
- 资助金额:
$ 67.7万 - 项目类别:
Effects of different doses of antioxidants(Vitamin E) intake on exercise induced oxidative stress, antioxidative capacity and chronic inflammation
不同剂量抗氧化剂(维生素E)摄入对运动引起的氧化应激、抗氧化能力和慢性炎症的影响
- 批准号:
22K11609 - 财政年份:2022
- 资助金额:
$ 67.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Contribution of antioxidants to regeneration of rotator cuff insertion
抗氧化剂对肩袖插入再生的贡献
- 批准号:
22K16720 - 财政年份:2022
- 资助金额:
$ 67.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Latent Antioxidants for Environmentally Responsible Polymer Formulations
用于环保聚合物配方的潜在抗氧化剂
- 批准号:
RGPIN-2018-04107 - 财政年份:2022
- 资助金额:
$ 67.7万 - 项目类别:
Discovery Grants Program - Individual
Polyunsaturated fatty acid (PUFA), inflammation and antioxidants
多不饱和脂肪酸 (PUFA)、炎症和抗氧化剂
- 批准号:
RGPIN-2019-05674 - 财政年份:2022
- 资助金额:
$ 67.7万 - 项目类别:
Discovery Grants Program - Individual
Suppressed methemoglobin formation of artificial red cell by liposomal antioxidants and its mechanism.
脂质体抗氧化剂抑制人工红细胞高铁血红蛋白形成及其机制
- 批准号:
22K12824 - 财政年份:2022
- 资助金额:
$ 67.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




