Low-Profile 3D-Printed Radiopaque Bioresorbable Vascular Scaffolds
薄型 3D 打印不透射线生物可吸收血管支架
基本信息
- 批准号:10093122
- 负责人:
- 金额:$ 76.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAntioxidantsArteriesAtherosclerosisBiocompatible MaterialsBiologyBlood VesselsBlood flowCaliberCardiacCardiologyCardiovascular systemCitratesClinical ResearchCoagulation ProcessCoronary ArteriosclerosisCoronary arteryDevicesDiabetes MellitusDimensionsDrug Delivery SystemsEndotheliumEpidemicEventFDA approvedFamily suidaeFormulationHealth Care CostsHumanImageIn VitroIncidenceInflammationInkLiquid substanceMechanicsMetabolic syndromeMetalsModelingMorbidity - disease rateOperative Surgical ProceduresOryctolagus cuniculusOutcomePatientsPeripheral arterial diseasePharmaceutical PreparationsPolymersProceduresProductionPropertyResearchResearch ProposalsResidual stateRiskSDZ RADSafetyScienceStentsTechniquesTechnologyThe SunThickThrombosisTimeTissuesTreatment outcomeWithdrawalbasebiodegradable polymerbiomaterial compatibilitycostdesigndiabeticdrug standardhemocompatibilityiliac arteryimproved outcomein vivomechanical propertiesmortalitymultidisciplinaryporcine modelpreventrestenosisscaffoldthrombogenesisvasomotion
项目摘要
PROJECT SUMMARY
Atherosclerotic coronary artery disease (CAD) and peripheral artery disease (PAD) are responsible for
significant morbidity, mortality, and high healthcare costs in the USA. This problem will continue to grow due to
the diabetes epidemic as people with diabetes are at increased risk of developing atherosclerosis and less
likely to have favorable treatment outcomes. Endovascular therapies such as placement of a metal stent that
has been dilated by a balloon will open the blockage and restore blood flow. However, these therapies are
plagued by relatively high restenosis rates, which have been attributed to the permanent presence of the stent.
Polymeric bioresorbable vascular scaffolds (BVSs) have emerged as a potential solution to these problems by
providing initial support to prevent recoil and slowly degrading to restore vasomotion and eliminate residual
foreign materials that may contribute to restenosis. However, polymeric BVSs are difficult to fabricate (making
them costly with limited design control) and are made from polymers such as poly(L-lactide) that are
thrombogenic and cause oxidative tissue damage resulting in exacerbated inflammation. In addition, as in the
case of the FDA-approved BVS Absorb GT1 from Abbott Vascular, the strut thickness has to be greater than
150 μm for the scaffold to have sufficient strength to prevent vessel recoil and to accommodate a polymer
coating that contains an anti-restenotic drug to prevent stent re-occlusion. Clinical studies suggest that this
strut thickness, which is 2 times larger than that of bare metal stents, leads to a high incidence of thrombosis in
small-diameter arteries (<2.5 mm) and major adverse cardiac events, limiting the wide spread use of these
devices due to their large profile. The Ameer and Sun research teams have been developing a liquid citrate-
based biomaterial (CBB) that is compatible with a 3D printing technique referred to as micro continuous liquid
interface production (μCLIP). CBBs, which are degradable, have been shown to be thromboresistant and
antioxidant. These properties are desirable for vascular stents. The objective of this research proposal is to
develop a low-profile, drug-eluting, biocompatible and mechanically functional citrate-based BVS. We
hypothesize that a low-profile citrate-based BVS fabricated via μCLIP will perform better than the large-profile
Absorb GT1 BVS in vivo. The specific aims are to: 1) Characterize, in vitro and in vivo in a rabbit model, low-
profile drug-eluting BVSs fabricated using μCLIP, and 2) Assess the safety and efficacy of 3D-printed, drug-
eluting BVSs in atherosclerotic swine with metabolic syndrome. Specifically, we will investigate the patency,
biocompatibility, and resorption of the BVS in coronary arteries of the Ossabaw miniature pig, which
recapitulates human coronary atherosclerosis and metabolic syndrome.
项目总结
动脉粥样硬化性冠状动脉疾病(CAD)和外周动脉疾病(PAD)是
美国严重的发病率、死亡率和高昂的医疗费用。由于以下原因,此问题将继续增长
糖尿病的流行,因为糖尿病患者患动脉粥样硬化的风险增加,而
可能会有有利的治疗结果。血管内治疗,如放置金属支架,
已经被气球扩张的血管会打开堵塞,恢复血流。然而,这些疗法是
受到相对较高的再狭窄率的困扰,这被归因于支架的永久存在。
聚合物生物可吸收血管支架(BVSS)通过以下方式成为解决这些问题的潜在方案
提供初始支持以防止后坐,并缓慢降解以恢复血管运动并消除残留
可能导致再狭窄的异物。然而,聚合物BVS难以制造(制造
它们价格昂贵,设计控制有限),由聚合物如聚(L-丙交酯)制成,这些聚合物
导致血栓形成并引起氧化组织损伤,从而加剧炎症。此外,正如在
FDA批准的BVS从雅培血管吸收GT1的情况下,支柱厚度必须大于
150μm,脚手架具有足够的强度以防止容器反冲并容纳聚合物
含有抗再狭窄药物以防止支架再次闭塞的涂层。临床研究表明,这一点
支架厚度是裸露金属支架的2倍,导致血栓发生率高。
小直径动脉(<;2.5毫米)和主要不良心脏事件,限制了它们的广泛使用
设备由于其庞大的配置文件。Ameer和Sun的研究团队一直在开发一种液体柠檬酸盐-
基于生物材料(CBB),与被称为微连续液体的3D打印技术兼容
界面制作(μ剪辑)。CBB是可降解的,已被证明具有抗血栓和
抗氧化剂。这些特性是血管支架所需要的。这项研究提案的目的是
开发一种低调、药物洗脱、生物相容性和机械功能的柠檬酸盐基BVS。我们
假设通过μClip制造的低调柠檬酸盐基BVS将比大调BVS表现更好
体内吸收GT1 BVS。其具体目的是:1)在体外和活体动物模型上表征低密度脂蛋白。
使用μ夹子制作的药物洗脱BVSS的轮廓,以及2)评估3D打印的药物洗脱BVSS的安全性和有效性。
代谢综合征动脉粥样硬化猪体内BVSS的洗脱。具体地说,我们将调查通畅性,
Ossabaw小型猪冠状动脉内BVS的生物相容性和吸收
概述了人类冠状动脉粥样硬化和代谢综合征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guillermo Antonio Ameer其他文献
Guillermo Antonio Ameer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guillermo Antonio Ameer', 18)}}的其他基金
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10641321 - 财政年份:2021
- 资助金额:
$ 76.57万 - 项目类别:
Telemetric Regenerative Bandage for Accelerating Wound Healing
用于加速伤口愈合的遥测再生绷带
- 批准号:
10663343 - 财政年份:2021
- 资助金额:
$ 76.57万 - 项目类别:
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10206938 - 财政年份:2021
- 资助金额:
$ 76.57万 - 项目类别:
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10424463 - 财政年份:2021
- 资助金额:
$ 76.57万 - 项目类别:
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10689787 - 财政年份:2021
- 资助金额:
$ 76.57万 - 项目类别:
Telemetric Regenerative Bandage for Accelerating Wound Healing
用于加速伤口愈合的遥测再生绷带
- 批准号:
10346507 - 财政年份:2021
- 资助金额:
$ 76.57万 - 项目类别:
Developing a SMART scaffold for bladder augmentation
开发用于膀胱扩张的 SMART 支架
- 批准号:
10429930 - 财政年份:2019
- 资助金额:
$ 76.57万 - 项目类别:
Low-Profile 3D-Printed Radiopaque Bioresorbable Vascular Scaffolds
薄型 3D 打印不透射线生物可吸收血管支架
- 批准号:
10329908 - 财政年份:2019
- 资助金额:
$ 76.57万 - 项目类别:
Transarterial Immunomodulatory Embolization: A novel approach to cancer therapy
经动脉免疫调节栓塞:癌症治疗的新方法
- 批准号:
9555090 - 财政年份:2016
- 资助金额:
$ 76.57万 - 项目类别:
Preclinical Investigation of a Bioengineered Vascular Graft
生物工程血管移植物的临床前研究
- 批准号:
8897878 - 财政年份:2013
- 资助金额:
$ 76.57万 - 项目类别:
相似海外基金
Enhancing gamete cryoprotective properties of graphene oxide by dual functionalization with antioxidants and non-penetrating cryoprotectant molecules
通过抗氧化剂和非渗透性冷冻保护剂分子的双重功能化增强氧化石墨烯的配子冷冻保护特性
- 批准号:
24K18002 - 财政年份:2024
- 资助金额:
$ 76.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SBIR Phase I: Sustainable antioxidants for industrial process fluids
SBIR 第一阶段:工业过程流体的可持续抗氧化剂
- 批准号:
2222215 - 财政年份:2023
- 资助金额:
$ 76.57万 - 项目类别:
Standard Grant
Development of a new bone augmentation method that enables long-term survival and long-term functional expression of transplanted cells by antioxidants
开发一种新的骨增强方法,通过抗氧化剂使移植细胞能够长期存活和长期功能表达
- 批准号:
23K09272 - 财政年份:2023
- 资助金额:
$ 76.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Invasive Probing Cellular Oxidative Stress and Antioxidants Therapeutic Effectiveness
非侵入性探测细胞氧化应激和抗氧化剂的治疗效果
- 批准号:
10652764 - 财政年份:2023
- 资助金额:
$ 76.57万 - 项目类别:
Mitochondria-targeting Novel Cationic Hydrazone Antioxidants for the Treatment of Preeclampsia
线粒体靶向新型阳离子腙抗氧化剂用于治疗先兆子痫
- 批准号:
10730652 - 财政年份:2023
- 资助金额:
$ 76.57万 - 项目类别:
Effects of different doses of antioxidants(Vitamin E) intake on exercise induced oxidative stress, antioxidative capacity and chronic inflammation
不同剂量抗氧化剂(维生素E)摄入对运动引起的氧化应激、抗氧化能力和慢性炎症的影响
- 批准号:
22K11609 - 财政年份:2022
- 资助金额:
$ 76.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Contribution of antioxidants to regeneration of rotator cuff insertion
抗氧化剂对肩袖插入再生的贡献
- 批准号:
22K16720 - 财政年份:2022
- 资助金额:
$ 76.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Latent Antioxidants for Environmentally Responsible Polymer Formulations
用于环保聚合物配方的潜在抗氧化剂
- 批准号:
RGPIN-2018-04107 - 财政年份:2022
- 资助金额:
$ 76.57万 - 项目类别:
Discovery Grants Program - Individual
Polyunsaturated fatty acid (PUFA), inflammation and antioxidants
多不饱和脂肪酸 (PUFA)、炎症和抗氧化剂
- 批准号:
RGPIN-2019-05674 - 财政年份:2022
- 资助金额:
$ 76.57万 - 项目类别:
Discovery Grants Program - Individual
Suppressed methemoglobin formation of artificial red cell by liposomal antioxidants and its mechanism.
脂质体抗氧化剂抑制人工红细胞高铁血红蛋白形成及其机制
- 批准号:
22K12824 - 财政年份:2022
- 资助金额:
$ 76.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)