Developing a SMART scaffold for bladder augmentation

开发用于膀胱扩张的 SMART 支架

基本信息

  • 批准号:
    10429930
  • 负责人:
  • 金额:
    $ 68.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-09 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

SUMMARY Each year in the United States, trauma, radiation therapy to treat urological cancers, severe cases of spina bifida, and interstitial cystitis contribute to at least 14,000 bladder augmentation enterocystoplasty surgeries. Although it is the standard of care for patients with an end-stage pathologic bladder, enterocystoplasty causes many complications due to anatomical and physiological differences between bladder tissue and the bowel tissue used to augment the bladder’s capacity. Several strategies have been reported to replace enterocystoplasty and regenerate bladder tissue but these have failed clinically. Reasons for the failure include the common use of phylogenetically dissimilar pre-clinical animal models that do not accurately represent the human bladder or its disease condition, the use of inadequate materials to serve as scaffolds for cells to grow on and regenerate bladder tissue, the use of often diseased autologous bladder cells that have lost the capacity to regenerate functional bladder tissue, and an inability to continuously monitor the tissue regeneration process to identify potential problems at an early stage. As a result, there is currently no viable alternative to augmentation enterocystoplasty. Regenerative engineering is a convergence of advanced material science, stem cell science, physics, and clinical translation. The overall goal of this project is to drive the development of unprecedented regenerative engineering tools and technologies via the integration of stem cell science, advanced biomaterials, and bio-integrated electronics to enable the regeneration of functional bladder tissue and the non-invasive, real-time assessment thereof to better predict outcome. Toward this goal, we have demonstrated our ability to: a) regenerate vascularized and innervated bladder tissue in a rat bladder augmentation model using a combination of bone marrow (BM) mesenchymal stem cells (MSCs), hematopoietic stem/progenitor cells (HSPCs), and an antioxidant citrate-based biodegradable elastomer, b) demonstrated successful bladder reconstruction with autologous cell-seeded POC scaffolds at 6 months in baboon; c) measure rat bladder pressure and control its function via a bio-integrated electronic strain gauge and light-activated excitatory channels, d) integrate stretchable electronics into citrate-based elastomers, and e) achieve wireless transmission of real time physiological data obtained in vivo using bio-integrated electronics. Towards our goal, the specific aims of this proposal are to: 1) Design, fabricate, and characterize bio-integrated electronics that monitor and modulate the function of regenerating bladder tissue via telemetry, 2) Engineer and characterize Stretch Monitoring Advanced Regenerative Telemetric (SMART) scaffolds for bladder augmentation, and 3) Assess the safety and efficacy of bladder conformal stretchable electronics and SMART scaffolds in a baboon bladder augmentation model.
总结 每年在美国,创伤,放射治疗,以治疗泌尿系统癌症,严重的情况下,脊柱 裂和间质性膀胱炎导致至少14,000例膀胱扩大肠膀胱成形术。 虽然它是治疗终末期病理性膀胱患者的标准,但肠膀胱成形术会导致 由于膀胱组织和肠之间的解剖学和生理学差异导致的许多并发症 用来增加膀胱容量的组织。据报道,有几种策略可以取代 肠膀胱成形术和再生膀胱组织,但这些在临床上都失败了。失败的原因包括 通常使用遗传学上不同的临床前动物模型,这些模型不能准确代表 人类膀胱或其疾病状况,使用不适当的材料作为细胞生长的支架 在膀胱组织上和再生膀胱组织,使用经常患病的自体膀胱细胞, 再生功能性膀胱组织的能力,以及不能持续监测组织 再生过程,以确定在早期阶段的潜在问题。因此,目前没有可行的 肠膀胱扩大术的替代方法。再生工程是一种先进的 材料科学、干细胞科学、物理学和临床翻译。该项目的总体目标是推动 前所未有的再生工程工具和技术的发展,通过集成干 细胞科学,先进的生物材料和生物集成电子学,使功能的再生 膀胱组织和其非侵入性实时评估,以更好地预测结果。为了实现这一目标, 我们已经证明了我们的能力:a)在大鼠膀胱中再生血管化和神经支配的膀胱组织 使用骨髓(BM)间充质干细胞(MSC), 造血干/祖细胞(HSPC)和抗氧化剂柠檬酸盐基生物可降解弹性体,B) 在6个月时,证明了用自体细胞接种的POC支架成功地进行了膀胱重建。 狒狒; c)通过生物集成电子应变计测量大鼠膀胱压力并控制其功能 d)将可拉伸电子器件集成到基于柠檬酸盐的弹性体中,以及 e)实现使用生物集成技术在体内获得的真实的时间生理数据的无线传输 electronics.为了实现我们的目标,本提案的具体目标是:1)设计,制造和表征 通过遥测监测和调节再生膀胱组织功能的生物集成电子器件, 2)设计和表征拉伸监测高级再生遥测(SMART)支架, 膀胱扩张,以及3)评估膀胱适形可拉伸电子器件的安全性和有效性, 狒狒膀胱增大模型中的SMART支架。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guillermo Antonio Ameer其他文献

Guillermo Antonio Ameer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guillermo Antonio Ameer', 18)}}的其他基金

Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
  • 批准号:
    10641321
  • 财政年份:
    2021
  • 资助金额:
    $ 68.14万
  • 项目类别:
Telemetric Regenerative Bandage for Accelerating Wound Healing
用于加速伤口愈合的遥测再生绷带
  • 批准号:
    10663343
  • 财政年份:
    2021
  • 资助金额:
    $ 68.14万
  • 项目类别:
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
  • 批准号:
    10206938
  • 财政年份:
    2021
  • 资助金额:
    $ 68.14万
  • 项目类别:
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
  • 批准号:
    10424463
  • 财政年份:
    2021
  • 资助金额:
    $ 68.14万
  • 项目类别:
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
  • 批准号:
    10689787
  • 财政年份:
    2021
  • 资助金额:
    $ 68.14万
  • 项目类别:
Telemetric Regenerative Bandage for Accelerating Wound Healing
用于加速伤口愈合的遥测再生绷带
  • 批准号:
    10346507
  • 财政年份:
    2021
  • 资助金额:
    $ 68.14万
  • 项目类别:
Low-Profile 3D-Printed Radiopaque Bioresorbable Vascular Scaffolds
薄型 3D 打印不透射线生物可吸收血管支架
  • 批准号:
    10093122
  • 财政年份:
    2019
  • 资助金额:
    $ 68.14万
  • 项目类别:
Low-Profile 3D-Printed Radiopaque Bioresorbable Vascular Scaffolds
薄型 3D 打印不透射线生物可吸收血管支架
  • 批准号:
    10329908
  • 财政年份:
    2019
  • 资助金额:
    $ 68.14万
  • 项目类别:
Transarterial Immunomodulatory Embolization: A novel approach to cancer therapy
经动脉免疫调节栓塞:癌症治疗的新方法
  • 批准号:
    9555090
  • 财政年份:
    2016
  • 资助金额:
    $ 68.14万
  • 项目类别:
Preclinical Investigation of a Bioengineered Vascular Graft
生物工程血管移植物的临床前研究
  • 批准号:
    8897878
  • 财政年份:
    2013
  • 资助金额:
    $ 68.14万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 68.14万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 68.14万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 68.14万
  • 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了