Developing a SMART scaffold for bladder augmentation
开发用于膀胱扩张的 SMART 支架
基本信息
- 批准号:10429930
- 负责人:
- 金额:$ 68.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-09 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Acute Kidney FailureAnatomyAnimal ModelAntioxidantsAutologousBiocompatible MaterialsBiologic CharacteristicBladderBladder ControlBladder TissueBlood VesselsCD34 geneCatheterizationCellsCitratesClinicalClinical ResearchDataDevelopmentDiseaseElasticityElastomersElectronicsEngineeringExtravasationFailureFunctional RegenerationGlycolatesGoalsHematopoietic stem cellsHeterogeneityHumanInflammatoryInterstitial CystitisIntestinesKidney FailureLifeLightMalignant - descriptorMeasuresMesenchymal Stem CellsModelingMonitorNatural regenerationOperative Surgical ProceduresOutcomePapioPathologicPatient CarePatient-Focused OutcomesPatientsPerforationPerformancePhylogenetic AnalysisPhysicsPhysiologicalPolymersPredispositionProblem SolvingProcessRadiation therapyRattusRegenerative engineeringReportingSafetyScienceScientistSerious Adverse EventSmall Intestinal SubmucosaSpinal DysraphismStretchingSystemTechnologyTelemetryTimeTissuesTraumaUnited StatesUrineUrologic CancerWorkbasebiocompatible scaffoldbiomaterial compatibilitybone marrow mesenchymal stem cellcanine modelclinical translationclinically relevantdesignexperimental studyimprovedin vivoinnovationmaterials sciencemechanical propertiesoptogeneticsoutcome predictionpoly(lactic acid)pre-clinicalpressurereconstructionregeneration functionregenerativescaffoldscale upstandard of carestem cellssurgery outcometissue regenerationtoolwireless electronicwireless transmission
项目摘要
SUMMARY
Each year in the United States, trauma, radiation therapy to treat urological cancers, severe cases of spina
bifida, and interstitial cystitis contribute to at least 14,000 bladder augmentation enterocystoplasty surgeries.
Although it is the standard of care for patients with an end-stage pathologic bladder, enterocystoplasty causes
many complications due to anatomical and physiological differences between bladder tissue and the bowel
tissue used to augment the bladder’s capacity. Several strategies have been reported to replace
enterocystoplasty and regenerate bladder tissue but these have failed clinically. Reasons for the failure include
the common use of phylogenetically dissimilar pre-clinical animal models that do not accurately represent the
human bladder or its disease condition, the use of inadequate materials to serve as scaffolds for cells to grow
on and regenerate bladder tissue, the use of often diseased autologous bladder cells that have lost the
capacity to regenerate functional bladder tissue, and an inability to continuously monitor the tissue
regeneration process to identify potential problems at an early stage. As a result, there is currently no viable
alternative to augmentation enterocystoplasty. Regenerative engineering is a convergence of advanced
material science, stem cell science, physics, and clinical translation. The overall goal of this project is to drive
the development of unprecedented regenerative engineering tools and technologies via the integration of stem
cell science, advanced biomaterials, and bio-integrated electronics to enable the regeneration of functional
bladder tissue and the non-invasive, real-time assessment thereof to better predict outcome. Toward this goal,
we have demonstrated our ability to: a) regenerate vascularized and innervated bladder tissue in a rat bladder
augmentation model using a combination of bone marrow (BM) mesenchymal stem cells (MSCs),
hematopoietic stem/progenitor cells (HSPCs), and an antioxidant citrate-based biodegradable elastomer, b)
demonstrated successful bladder reconstruction with autologous cell-seeded POC scaffolds at 6 months in
baboon;
c) measure rat bladder pressure and control its function via a bio-integrated electronic strain gauge
and light-activated excitatory channels, d) integrate stretchable electronics into citrate-based elastomers, and
e) achieve wireless transmission of real time physiological data obtained in vivo using bio-integrated
electronics. Towards our goal, the specific aims of this proposal are to: 1) Design, fabricate, and characterize
bio-integrated electronics that monitor and modulate the function of regenerating bladder tissue via telemetry,
2) Engineer and characterize Stretch Monitoring Advanced Regenerative Telemetric (SMART) scaffolds for
bladder augmentation, and 3) Assess the safety and efficacy of bladder conformal stretchable electronics and
SMART scaffolds in a baboon bladder augmentation model.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guillermo Antonio Ameer其他文献
Guillermo Antonio Ameer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guillermo Antonio Ameer', 18)}}的其他基金
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10641321 - 财政年份:2021
- 资助金额:
$ 68.14万 - 项目类别:
Telemetric Regenerative Bandage for Accelerating Wound Healing
用于加速伤口愈合的遥测再生绷带
- 批准号:
10663343 - 财政年份:2021
- 资助金额:
$ 68.14万 - 项目类别:
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10206938 - 财政年份:2021
- 资助金额:
$ 68.14万 - 项目类别:
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10424463 - 财政年份:2021
- 资助金额:
$ 68.14万 - 项目类别:
Regenerative Engineering Training Program (RE-Training)
再生工程培训计划(RE-Training)
- 批准号:
10689787 - 财政年份:2021
- 资助金额:
$ 68.14万 - 项目类别:
Telemetric Regenerative Bandage for Accelerating Wound Healing
用于加速伤口愈合的遥测再生绷带
- 批准号:
10346507 - 财政年份:2021
- 资助金额:
$ 68.14万 - 项目类别:
Low-Profile 3D-Printed Radiopaque Bioresorbable Vascular Scaffolds
薄型 3D 打印不透射线生物可吸收血管支架
- 批准号:
10093122 - 财政年份:2019
- 资助金额:
$ 68.14万 - 项目类别:
Low-Profile 3D-Printed Radiopaque Bioresorbable Vascular Scaffolds
薄型 3D 打印不透射线生物可吸收血管支架
- 批准号:
10329908 - 财政年份:2019
- 资助金额:
$ 68.14万 - 项目类别:
Transarterial Immunomodulatory Embolization: A novel approach to cancer therapy
经动脉免疫调节栓塞:癌症治疗的新方法
- 批准号:
9555090 - 财政年份:2016
- 资助金额:
$ 68.14万 - 项目类别:
Preclinical Investigation of a Bioengineered Vascular Graft
生物工程血管移植物的临床前研究
- 批准号:
8897878 - 财政年份:2013
- 资助金额:
$ 68.14万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 68.14万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 68.14万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 68.14万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 68.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 68.14万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 68.14万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 68.14万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 68.14万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 68.14万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 68.14万 - 项目类别:
Studentship