The integrated Translational Health Research Institute of Virginia (iTHRIV): Using Data to Improve Health

弗吉尼亚综合转化健康研究所 (iTHRIV):利用数据改善健康

基本信息

  • 批准号:
    10335371
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

The unknown and changing characteristics of the SARS-CoV-2 pandemic have severely challenged the United States (U.S.) health care systems. The key to addressing many of these challenges is data and information sharing. To do this requires bringing together individual level health data from disparate systems into a common structure that can be analyzed for answers to the important questions about COVID-19. Within the health informatics community there are two approaches to integrating data for analysis: (1) Federated data sharing which keeps the data at individual locations and allows for aggregated queries and (2) Harmonized repository that joins the data from the different sites into one database with a common data model that allows for individual or row level queries. While the federated approach is easier to implement and much more widely used, the harmonization approach is what is needed to address the challenges of the COVID-19 pandemic since it will enable more impactful data analysis on the scientific questions surrounding this disease. The University of Virginia (UVA), the lead site for the cross-state integrated Translational Health Research Institute of Virginia (iTHRIV), is well positioned to serve as an initial, pilot provider of data for the harmonized, analytic database being assembled by the National Center for Advancing Translational Sciences (NCATS) known as the National COVID Cohort Collaborative (N3C). There four reasons iTHRIV can do this at UVA: 1) iTHRIV has implemented the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) and this is not only the accepted CDM for data transfer to N3C but it also the target data transfer model for N3C, which will make the iTHRIV CDM a good choice to validate data transforms; 2) The iTHRIV informatics team have been active participants in the development of the COVID-19 Phenotype implementation in OMOP and we can thus quickly implement the data queries; 3) The iTHRIV data Commons utilizes an architecture which includes multiple CDM and this gives us the capability to expand data acquisition to all partner institutions in iTHRIV and to rapidly respond to changes required in data acquisition and transfer; and 4) The University of Virginia has an IRB Reliance Agreement in place with SMART IRB and can rely on any non-UVA IRB that also has an IRB Reliance Agreement with SMART IRB, which will streamline our start-up process for participation. iTHRIV at UVA therefore provides an ideal pilot site for the N3C project, and brings the iTHRIV Commons and the iTHRIV partners institutions to rapidly support rapid expansion to other CDM as a model for the larger consortium. The Commons also provides a leading team-science platform during the follow-on phases of N3C where researchers within Virginia can collaborate with others from around the U.S. and the world to analyze the data collected in centralized repository by the N3C project and address impactful health problems for the community.
SARS-CoV-2大流行的未知和不断变化的特征严重挑战了国际卫生组织

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald E Brown其他文献

Donald E Brown的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald E Brown', 18)}}的其他基金

The integrated Translational Health Research Institute of Virginia (iTHRIV): Using Data to Improve Health
弗吉尼亚综合转化健康研究所 (iTHRIV):利用数据改善健康
  • 批准号:
    10367106
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
The integrated Translational Health Research Institute of Virginia (iTHRIV): Using Data to Improve Health
弗吉尼亚综合转化健康研究所 (iTHRIV):利用数据改善健康
  • 批准号:
    10158925
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
Provision of Clinical Data to Support a Nationwide COVID-19 Cohort Collaborative
提供临床数据以支持全国范围内的 COVID-19 队列协作
  • 批准号:
    10159046
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
Convalescent Immune Plasma for the Treatment of COVID-19: Mechanisms Underlying the Host Immunologic and Virologic Response
用于治疗 COVID-19 的恢复期免疫血浆:宿主免疫学和病毒学反应的机制
  • 批准号:
    10213475
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
The integrated Translational Health Research Institute of Virginia (iTHRIV): Using Data to Improve Health
弗吉尼亚综合转化健康研究所 (iTHRIV):利用数据改善健康
  • 批准号:
    10558478
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
The integrated Translational Health Research Institute of Virginia (iTHRIV): Using Data to Improve Health
弗吉尼亚综合转化健康研究所 (iTHRIV):利用数据改善健康
  • 批准号:
    10094090
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
The integrated Translational Health Research Institute of Virginia (iTHRIV): Using Data to Improve Health
弗吉尼亚综合转化健康研究所 (iTHRIV):利用数据改善健康
  • 批准号:
    10347172
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
Pilot Study to Determine Health Effects of e-cigarette in Healthy Young Adults
确定电子烟对健康年轻人健康影响的试点研究
  • 批准号:
    10338542
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
Pilot Study to Determine Health Effects of e-cigarette in Healthy Young Adults
确定电子烟对健康年轻人健康影响的试点研究
  • 批准号:
    10198248
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
Transdisciplinary Big Data Science Training at UVa
弗吉尼亚大学跨学科大数据科学培训
  • 批准号:
    9901572
  • 财政年份:
    2016
  • 资助金额:
    $ 5万
  • 项目类别:

相似海外基金

Exploring the Potential Clinical Application of Pulse Arrival Time for Assessing Arterial Stiffness Using Machine Learning Algorithms
使用机器学习算法探索脉冲到达时间评估动脉僵硬度的潜在临床应用
  • 批准号:
    2649903
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Studentship
Implementing clinical decision support for improved outpatient neurorehabilitation post-stroke and spinal cord injury through the integration of wearable technology and deep learning algorithms.
通过集成可穿戴技术和深度学习算法,实施临床决策支持,以改善中风和脊髓损伤后的门诊神经康复。
  • 批准号:
    475572
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Studentship Programs
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
  • 批准号:
    10559690
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
  • 批准号:
    10437156
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10277514
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10462646
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10631239
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10329938
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10405326
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
  • 批准号:
    10809977
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了