Great Lakes Node of the Drug Abuse Clinical Trials Network
药物滥用临床试验网络五大湖节点
基本信息
- 批准号:10335544
- 负责人:
- 金额:$ 11.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAdolescentAfrican AmericanAgingAreaArtificial IntelligenceAsianBuprenorphineCaringCessation of lifeChicagoCitiesClinical TrialsClinical Trials NetworkCollaborationsCommunitiesCountyData AnalyticsDistance EducationDrug abuseElectronic Health RecordEmergency department visitEpidemicFederal GovernmentGender IdentityGeographyHealthHealth systemHeroinHomeHomelessnessHospitalsIllinoisIndianaIndividualInterventionLatinoLearningLife Cycle StagesLos AngelesMentorshipMethodsMidwestern United StatesMinorityModelingMorbidity - disease rateNational Institute of Drug AbuseNative AmericansNatural Language ProcessingNew YorkOpioidOpioid AnalgesicsPacific Island AmericansPathway interactionsPopulationPrevention strategyProfessional EducationProfessional PracticeProtocols documentationPublic HealthRefugeesResearchResearch MethodologyResearch PersonnelResearch TrainingRestRuralSex OrientationSideSystemTestingTrainingTraining SupportUnited States National Institutes of HealthUniversitiesVeteransVulnerable PopulationsWisconsinWorkaddictionadolescent healthbasecollaborative carecookingdigitaleHealthethnic diversityexperiencehealth disparityinterestmHealthmedical schoolsmetropolitanmobile computingmortalitynovelopioid misuseopioid overdoseopioid treatment programoverdose deathpopulation healthprogramsracial and ethnicracial diversityrural areascreeningsexual identitysocioeconomicssubstance misusesuburbsuccesstelehealthurban areawaiveryoung adult
项目摘要
PROJECT SUMMARY
Individuals with substance use disorders are disproportionately experiencing homelessness, poverty,
and chronic medical conditions (diabetes and hypertension), which are emerging risk factors for contracting
SARS-CoV-2 (official name for the virus that causes COVID-19). Different types of substance use have been
associated with development of respiratory infections and progression to severe respiratory failure, also known
as Acute Respiratory Distress Syndrome (ARDS). However, complex syndromes like ARDS and behavioral
conditions like substance misuse are difficult to identify from the electronic health record. Clinical notes and
radiology reports provide a rich source of information that may be used to identify cases of substance misuse
and ARDS. This information is routinely recorded during hospital care, and automated, data-driven solutions
with natural language processing (NLP) can extract semantics and important risk factors from the unstructured
data of clinical notes. The computational methods of NLP derive meaning from clinical notes, from which
machine learning can predict risk factors for patients leaving AMA or progressing to respiratory failure. Our
team developed tools with >80% sensitivity/specificity to identify individual types of substance misuse using
NLP with machine learning (ML). Our single-center models delineated risk factors embedded in the notes (e.g.,
mental health conditions, socioeconomic indicators). Further, we have developed and externally validated a
machine learning tool to identify cases of ARDS with high accuracy for early treatment. We aim to expand this
work by pooling data across health systems and build a generalizable and comprehensive classifier that
captures multiple types of substance misuse for use in risk stratification and prognostication during the COVID
pandemic.
We hypothesize that a single-model NLP substance misuse classifier will provide a standardized,
interoperable, and accurate approach for universal analysis of hospitalized patients, and that such information
can be used to identify those at risk for disrupted care and those at risk for respiratory failure. We aim to train
and test our substance misuse classifiers at Rush in a retrospective dataset of over 60,000 hospitalizations
that have been manually screened with the universal screen, AUDIT, and DAST. This Administrative
Supplement will allow us to examine the correlations between substances of misuse and risk for COVID-19 as
well as development of Acute Respiratory Distress Syndrome (ARDS) in the context of these phenomena.
项目摘要
患有药物使用障碍的人不成比例地经历着无家可归,贫困,
和慢性疾病(糖尿病和高血压),这些都是新出现的感染风险因素
SARS-CoV-2(导致COVID-19的病毒的正式名称)。不同类型的物质使用已被
与呼吸道感染的发展和严重呼吸衰竭的进展相关,也称为
急性呼吸窘迫综合征(ARDS)。然而,复杂的综合征,如ARDS和行为
像药物滥用这样的情况很难从电子健康记录中识别。临床记录和
放射学报告提供了丰富的信息来源,可用于识别物质滥用的情况
和ARDS。这些信息在医院护理期间被常规记录,
自然语言处理(NLP)可以从非结构化的
临床记录的数据。NLP的计算方法从临床笔记中获得意义,
机器学习可以预测患者离开AMA或进展为呼吸衰竭的风险因素。我们
团队开发的工具具有>80%的灵敏度/特异性,可使用
NLP与机器学习(ML)我们的单中心模型描述了嵌入在注释中的风险因素(例如,
心理健康状况、社会经济指标)。此外,我们还开发了一种
机器学习工具,以高准确度识别ARDS病例,进行早期治疗。我们的目标是扩大这一
通过汇集卫生系统的数据,建立一个可推广的综合分类器,
捕获多种类型的物质滥用,用于COVID期间的风险分层和分类
流行病
我们假设单一模型的NLP物质滥用分类器将提供标准化的,
用于对住院患者进行通用分析的可互操作且准确的方法,
可以用来识别那些有中断护理风险的人和那些有呼吸衰竭风险的人。我们的目标是培养
并在Rush对超过60,000例住院病例的回顾性数据集中测试我们的物质滥用分类器
已经用通用屏幕、AUDIT和DAST手动筛选的。这一行政
补充将使我们能够检查滥用物质与COVID-19风险之间的相关性,
以及在这些现象的背景下发生急性呼吸窘迫综合征(ARDS)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Niranjan Subhash Karnik其他文献
Niranjan Subhash Karnik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Niranjan Subhash Karnik', 18)}}的其他基金
Chicago Data-driven OUD Screening, Engagement, Treatment and Planning (C-DOSETaP) System
芝加哥数据驱动的 OUD 筛查、参与、治疗和规划 (C-DOSETaP) 系统
- 批准号:
10745471 - 财政年份:2023
- 资助金额:
$ 11.67万 - 项目类别:
Better Together: Integrating MOUD in African American Community Settings
更好地在一起:将 MOUD 融入非裔美国人社区环境
- 批准号:
10781200 - 财政年份:2022
- 资助金额:
$ 11.67万 - 项目类别:
Great Lakes Node of the Drug Abuse Clinical Trials Network
药物滥用临床试验网络五大湖节点
- 批准号:
10662573 - 财政年份:2022
- 资助金额:
$ 11.67万 - 项目类别:
Great Lakes Node of the Drug Abuse Clinical Trials Network
药物滥用临床试验网络五大湖节点
- 批准号:
10583828 - 财政年份:2022
- 资助金额:
$ 11.67万 - 项目类别:
Quantifying How Cocaine Users Respond to Fentanyl Contamination in Cocaine
量化可卡因使用者对可卡因芬太尼污染的反应
- 批准号:
10403871 - 财政年份:2021
- 资助金额:
$ 11.67万 - 项目类别:
HEAL Diversity Supplement: Great Lakes Nodes Clinical Trials Network
HEAL 多样性补充:五大湖节点临床试验网络
- 批准号:
10354615 - 财政年份:2019
- 资助金额:
$ 11.67万 - 项目类别:
Great Lakes Node of the Drug Abuse Clinical Trials Network
药物滥用临床试验网络五大湖节点
- 批准号:
10133036 - 财政年份:2019
- 资助金额:
$ 11.67万 - 项目类别:
Great Lakes Node of the Drug Abuse Clinical Trials Network
药物滥用临床试验网络五大湖节点
- 批准号:
10545971 - 财政年份:2019
- 资助金额:
$ 11.67万 - 项目类别:
Rush University Life Course SBIRT Training Program
拉什大学生活课程 SBIRT 培训计划
- 批准号:
8866099 - 财政年份:2014
- 资助金额:
$ 11.67万 - 项目类别:
相似海外基金
The Effect of Food Marketing and Attentional Biases on Eating behaviors in the African American Adolescent Girls
食品营销和注意力偏差对非裔美国少女饮食行为的影响
- 批准号:
9126868 - 财政年份:2016
- 资助金额:
$ 11.67万 - 项目类别:
Role of 3D Weight Progression Software in Weight Counseling to Decrease Weight-related Health Disparities Among Adolescent African-American Females
3D 体重进展软件在体重咨询中的作用,以减少非洲裔美国青少年女性与体重相关的健康差异
- 批准号:
9000873 - 财政年份:2015
- 资助金额:
$ 11.67万 - 项目类别:
Location Initiated Individualized Texts for African American Adolescent Health
地点发起针对非裔美国青少年健康的个性化文本
- 批准号:
8723627 - 财政年份:2014
- 资助金额:
$ 11.67万 - 项目类别:
Exposure to violence and unsafe sex in late adolescent African American women
青春期晚期非裔美国女性遭受暴力和不安全性行为的情况
- 批准号:
8235399 - 财政年份:2012
- 资助金额:
$ 11.67万 - 项目类别:
Exposure to violence and unsafe sex in late adolescent African American women
青春期晚期非裔美国女性遭受暴力和不安全性行为的情况
- 批准号:
8607975 - 财政年份:2012
- 资助金额:
$ 11.67万 - 项目类别:
Exposure to violence and unsafe sex in late adolescent African American women
青春期晚期非裔美国女性遭受暴力和不安全性行为的情况
- 批准号:
8432426 - 财政年份:2012
- 资助金额:
$ 11.67万 - 项目类别:
Exposure to violence and unsafe sex in late adolescent African American women
青春期晚期非裔美国女性遭受暴力和不安全性行为的情况
- 批准号:
8575946 - 财政年份:2012
- 资助金额:
$ 11.67万 - 项目类别:
Adapting SiHLE for Detained African American Adolescent Females
为被拘留的非洲裔美国青少年女性调整 SiHLE
- 批准号:
7915478 - 财政年份:2007
- 资助金额:
$ 11.67万 - 项目类别:
Adapting SiHLE for Detained African American Adolescent Females
为被拘留的非洲裔美国青少年女性调整 SiHLE
- 批准号:
7392883 - 财政年份:2007
- 资助金额:
$ 11.67万 - 项目类别:
Adapting SiHLE for Detained African American Adolescent Females
为被拘留的非洲裔美国青少年女性调整 SiHLE
- 批准号:
7494104 - 财政年份:2007
- 资助金额:
$ 11.67万 - 项目类别:














{{item.name}}会员




