Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
基本信息
- 批准号:10338723
- 负责人:
- 金额:$ 46.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAllosteric RegulationAntineoplastic AgentsAreaAttentionBehaviorBinding SitesBiochemistryBiologyCalorimetryCatalysisChemicalsChemistryChorismate MutaseCommunicationDistalEngineeringEnzymesEscherichia coliExhibitsFluorouracilFoundationsGoalsGuanosine Triphosphate PhosphohydrolasesHumanInvestigationLabelLaboratoriesLigand BindingLigandsMetabolismMolecular ConformationMovementNMR SpectroscopyNaturePathway interactionsPropertyProtein EngineeringProteinsProtomerRegulationRoleSignal TransductionSignaling ProteinSiteStructureSystemTechnologyThymidylate SynthaseWorkX-Ray Crystallographybasebiophysical analysisbiophysical techniquesdimerdrug developmentdrug discoveryfallsflexibilityimprovedinterestmolecular dynamicsoptogeneticsprotein functionsmall molecule
项目摘要
Abstract
Biology is driven through the action of proteins. We know that structure often provides the foundation for proteins’
function, but in recent years it has become clear that protein function is also critically dependent on dynamics,
or movements of structure. How dynamics enables function is now a central question in protein biology that limits
our basic understanding of proteins, as well as applications in drug discovery and protein design. While there
are many types of functions that dynamics – or conformational flexibility – promotes, two functional archetypes
for dynamics are enzyme catalysis and allostery. The mechanistic bases for these two phenomena, pervasive
as they are, remain largely mysterious and have attracted much attention for the likely role of dynamics. The Lee
laboratory has focused on studying dynamics and allostery in proteins using NMR and other biophysical methods
for nearly 20 years. The approach outlined in this proposal is to combine investigation of natural allosteric
enzymes (Areas 1 and 2) with efforts to engineer allosteric regulation into signaling proteins using optogenetics
(Area 3). In the last five years, the lab has developed two complementary systems for NMR and biophysical
studies of dynamics and allostery that are highly amenable for addressing these mechanistic questions and,
importantly, developing approaches to study intersubunit allosteric communication. The two systems are the
enzymes chorismate mutase (CM) and thymidylate synthase (TS), both symmetric homodimers that are
functionally allosteric. CM (from yeast) is a classically allosteric protein, exhibiting all the hallmarks of traditional
allostery: sigmoidal activity curve; symmetric quaternary structure; tense (“T”) and relaxed (“R”) conformations;
and small molecule allosteric effector ligands that either up- or down-regulate activity. In contrast to CM’s positive
cooperativity, TS is negatively cooperative because it is half-the-sites reactive. Work will be on the E. coli (ecTS)
and human (hTS) forms, which, despite their similarities show very different behaviors. The human TS is the
target of anticancer drug 5-fluoro-uracil (5-FU). CM, ecTS, and hTS all have outstanding features for study by
solution NMR since they are highly soluble, stable, and yield excellent spectra. The goals for the next five years
fall into three main areas: (1) Through the use of NMR spectroscopy, molecular dynamics simulations,
calorimetry, x-ray crystallography, and biochemistry, the structural and dynamic properties of these enzymes will
be related to functional behaviors of key interest, such as: allosteric communication; how apo state conformations
compare to T and R conformations; protomer asymmetry in singly liganded states; and the nature of the transition
state. (2) We will advance the study of protein homodimers by NMR by introducing a technology for chemical
conjugation of protomers using click chemistry. Mixed labeled dimers produced this way will facilitate NMR study
of interprotomer interactions, such as allostery, and improve NMR structure determination of homodimers. (3)
For engineered GTPases that have been artificially placed under optogenetic control, the allosteric mechanisms
will be determined using an NMR approach.
摘要
生物学是通过蛋白质的作用来驱动的。我们知道,结构通常为蛋白质的功能提供基础。
功能,但近年来已经清楚的是,蛋白质功能也严重依赖于动力学,
或结构的运动。动力学如何实现功能现在是蛋白质生物学的一个中心问题,
我们对蛋白质的基本理解,以及在药物发现和蛋白质设计中的应用。虽然
有许多类型的功能,动力学-或构象灵活性-促进,两个功能原型
是酶催化和变构。这两种现象的机械基础,
尽管如此,它们在很大程度上仍然是神秘的,并且由于动力学可能的作用而引起了人们的广泛关注。李
一个实验室专注于研究动态和变构蛋白质使用核磁共振和其他生物物理方法
将近20年了该建议中概述的方法是将天然变构的研究与联合收割机的研究结合起来,
酶(领域1和2),致力于利用光遗传学将变构调节工程化为信号蛋白
(Area 3)。在过去的五年里,该实验室开发了两个互补的系统,用于核磁共振和生物物理
动力学和变构的研究非常适合解决这些机械问题,
重要的是,发展研究亚基间变构通讯的方法。这两个系统是
分支酸合成酶(CM)和胸苷酸合成酶(TS),两者都是对称的同源二聚体,
功能性别构的CM(来自酵母)是一种经典的变构蛋白,表现出传统的变构蛋白的所有特征。
变构:S形活性曲线;对称四级结构;紧张(“T”)和松弛(“R”)构象;
以及上调或下调活性的小分子变构效应配体。与CM的积极
协同性,TS是负协同的,因为它是一半的网站反应。工作将在E。大肠杆菌(ecTS)
和人类(HTS)的形式,尽管它们的相似之处显示出非常不同的行为。人类TS是
抗癌药物5-氟尿嘧啶(5-FU)靶向。CM、ecTS和hTS都具有突出的特征,可通过
溶液NMR,因为它们是高度可溶的、稳定的并且产生优异的光谱。未来五年的目标
分为三个主要领域:(1)通过使用NMR光谱,分子动力学模拟,
量热法,X射线晶体学和生物化学,这些酶的结构和动力学性质将
与关键感兴趣的功能行为有关,例如:变构通讯;载脂蛋白状态构象如何
比较T和R构象;单配位态中的原异构体不对称性;以及过渡的性质
状态(2)我们将通过引入化学分析技术,
使用点击化学进行原异构体的缀合。以这种方式产生的混合标记二聚体将有助于NMR研究
的前体间的相互作用,如变构,并改善NMR结构测定的同源二聚体。(三)
对于已经人工置于光遗传学控制下的工程化GTP酶,变构机制
将使用NMR方法测定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew L Lee其他文献
Prostate Specific Antigen Doubling Time
前列腺特异性抗原倍增时间
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
P. Arlen;F. Bianco;W. Dahut;A. D'Amico;W. Figg;S. Freedland;J. Gulley;P. Kantoff;M. Kattan;Andrew L Lee;M. Regan;O. Sartor - 通讯作者:
O. Sartor
Utility of the percentage of positive prostate biopsies in predicting PSA outcome after radiotherapy for patients with clinically localized prostate cancer.
前列腺活检阳性百分比在预测临床局限性前列腺癌患者放疗后 PSA 结果中的效用。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
U. Selek;Andrew L Lee;L. Levy;D. Kuban - 通讯作者:
D. Kuban
Andrew L Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew L Lee', 18)}}的其他基金
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
- 批准号:
10653812 - 财政年份:2022
- 资助金额:
$ 46.22万 - 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
- 批准号:
10691713 - 财政年份:2022
- 资助金额:
$ 46.22万 - 项目类别:
Request for a 500 MHz NMR console and nitrogen-cooled cryoprobe
请求 500 MHz NMR 控制台和氮冷冷冻探头
- 批准号:
10440662 - 财政年份:2022
- 资助金额:
$ 46.22万 - 项目类别:
Equipment Supplement to Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能机制和动力学的设备补充
- 批准号:
10669454 - 财政年份:2022
- 资助金额:
$ 46.22万 - 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
- 批准号:
10021672 - 财政年份:2019
- 资助金额:
$ 46.22万 - 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
- 批准号:
10372370 - 财政年份:2019
- 资助金额:
$ 46.22万 - 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
- 批准号:
10216306 - 财政年份:2019
- 资助金额:
$ 46.22万 - 项目类别:
Dynamic Networks and Mechanisms of Allosteric Communication in Proteins
蛋白质变构通讯的动态网络和机制
- 批准号:
7933132 - 财政年份:2009
- 资助金额:
$ 46.22万 - 项目类别:
The role of dynamics in enzyme mechanism and allostery
动力学在酶机制和变构中的作用
- 批准号:
9979900 - 财政年份:2008
- 资助金额:
$ 46.22万 - 项目类别:
Intra- and Intermolecular Dynamics of Dihydrofolate Reductase
二氢叶酸还原酶的分子内和分子间动力学
- 批准号:
7749030 - 财政年份:2008
- 资助金额:
$ 46.22万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 46.22万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 46.22万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 46.22万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 46.22万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 46.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 46.22万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 46.22万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 46.22万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 46.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 46.22万 - 项目类别:
Studentship