Structural and Dynamic Mechanisms in Classical Protein Allostery

经典蛋白质变构的结构和动力学机制

基本信息

  • 批准号:
    10021672
  • 负责人:
  • 金额:
    $ 34.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-20 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Abstract Allosteric regulation of protein activity is a physico-mechanical phenomenon that underlies the coordination of cellular events throughout biology. Signal transduction, metabolism, and other essential cellular processes are completely reliant on the executions of conformational and dynamic changes that enable allosteric proteins to communicate between distant sites. To understand such biological mechanisms – and by extension to understand how to rationally alter cellular processes, either with drugs or protein engineering – is to understand this fundamental problem of how allosteric regulation works. Yet, even though allosteric regulation has been recognized for decades and despite the recent realization that dynamics contributes to allostery, our understanding of allosteric mechanism is still at a rudimentary level. One limitation has been that the roles of dynamics in allostery have been drawn from just a few systems, most of which lack the classic indicators of functional allostery. Another limitation is that gaining accurate information on functional dynamics is experimentally challenging. To identify basic working principles of allostery, mechanisms of allosteric behavior must be observed in proteins that are “strongly allosteric”, where allosteric movements and signatures will be more easily identified. In the long term, knowledge of allosteric mechanism will enhance protein research in general and have a huge positive impact on design of allosteric drugs and allosteric proteins. The focus of this work will be on the allosteric enzyme chorismate mutase (CM). By all considerations, this enzyme appears to be ideal for high-resolution dissective studies of its allosteric mechanisms. CM is a canonical allosteric enzyme as evidenced by a number of characteristics: it is a symmetric dimer with active sites separated by 40 Å; it undergoes T-to-R conformational transitions; it exhibits homotropic allostery (Hill coefficient = 1.6); and it exhibits heterotropic allostery with small molecule effectors that modulate activity up (by Trp) or down (by Tyr). CM is 60 kDa which makes it amenable to solution NMR studies, and it is extremely soluble and durable and yields outstanding quality NMR spectra. The rich allosteric characteristics of CM will allow classical allostery to be examined experimentally using NMR and other biochemical and biophysical methods (including computations) in unprecedented detail. In this proposal, Aims 1 and 2 employ NMR, computational methods, and chemical synthesis to characterize the structural and dynamic features of apo and liganded states of CM in solution. The responses of CM to binding effectors and a transition state analog will be monitored, all towards the goal of identification of mechanisms of heterotropic long-range communication. Aim 3 is focused on extending a novel labeling methodology for monitoring mechanisms of homotropic allostery. “Click” chemistry will be used to covalently and specifically tether CM promoters together to stabilize samples used for studying the elusive singly ligated state. This approach will be useful for NMR studies of protein dimers in general.
摘要 蛋白质活性的变构调节是一种物理机械现象,其是蛋白质活性的协调的基础。 细胞事件贯穿生物学。信号转导、代谢和其他基本的细胞过程, 完全依赖于执行构象和动态变化,使变构蛋白质, 远程站点之间的通信。为了理解这种生物学机制, 了解如何合理地改变细胞过程,无论是药物还是蛋白质工程-就是了解 这个关于变构调节如何起作用的基本问题。然而,尽管变构调节已经被 几十年来,尽管最近认识到动力学有助于变构, 对变构机制的了解仍处于初级水平。一个限制是, 变构动力学仅来自少数系统,其中大多数缺乏经典的 功能性变构另一个限制是,获得关于功能动力学的准确信息, 实验挑战明确变构的基本工作原理,变构行为的机制 必须在“强变构”的蛋白质中观察到,其中变构运动和特征将被 更容易识别。从长远来看,对变构机制的了解将促进蛋白质研究, 这是普遍的,并对变构药物和变构蛋白的设计产生了巨大的积极影响。的重点 工作将在变构酶分支酸酯(CM)。从各方面考虑,这种酶似乎是 理想的高分辨率解剖研究其变构机制。CM是一种典型的变构酶, 由许多特征证明:它是一个对称的二聚体,活性位点相隔40 nm;它 经历T-to-R构象转变;其表现出同向变构(Hill系数= 1.6);并且其表现出 具有调节活性上调(通过Trp)或下调(通过Tyr)的小分子效应物的异向性变构。CM 60 kDa,这使得它适合于溶液NMR研究,并且它是极其可溶的和持久的, 高质量的核磁共振谱。CM丰富的变构特性将允许经典的变构被 使用NMR和其他生物化学和生物物理方法(包括计算)进行实验检查 前所未有的细节。在该提案中,目标1和2采用NMR、计算方法和化学方法。 合成以表征溶液中CM的载脂蛋白和配体状态的结构和动力学特征。的 将监测CM对结合效应物和过渡态类似物的反应,所有这些都是为了实现以下目标: 异向远距离通讯机制的确定。目标3的重点是扩展一个新的 用于监测同向性变构机制的标记方法学。“点击”化学将被用来 共价和特异性地将CM启动子拴在一起,以稳定用于研究难以捉摸的单个 连接状态。这种方法将是有用的NMR研究蛋白质二聚体一般。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew L Lee其他文献

Prostate Specific Antigen Doubling Time
前列腺特异性抗原倍增时间
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Arlen;F. Bianco;W. Dahut;A. D'Amico;W. Figg;S. Freedland;J. Gulley;P. Kantoff;M. Kattan;Andrew L Lee;M. Regan;O. Sartor
  • 通讯作者:
    O. Sartor
Utility of the percentage of positive prostate biopsies in predicting PSA outcome after radiotherapy for patients with clinically localized prostate cancer.
前列腺活检阳性百分比在预测临床局限性前列腺癌患者放疗后 PSA 结果中的效用。

Andrew L Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew L Lee', 18)}}的其他基金

Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
  • 批准号:
    10653812
  • 财政年份:
    2022
  • 资助金额:
    $ 34.83万
  • 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
  • 批准号:
    10338723
  • 财政年份:
    2022
  • 资助金额:
    $ 34.83万
  • 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
  • 批准号:
    10691713
  • 财政年份:
    2022
  • 资助金额:
    $ 34.83万
  • 项目类别:
Request for a 500 MHz NMR console and nitrogen-cooled cryoprobe
请求 500 MHz NMR 控制台和氮冷冷冻探头
  • 批准号:
    10440662
  • 财政年份:
    2022
  • 资助金额:
    $ 34.83万
  • 项目类别:
Equipment Supplement to Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能机制和动力学的设备补充
  • 批准号:
    10669454
  • 财政年份:
    2022
  • 资助金额:
    $ 34.83万
  • 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
  • 批准号:
    10372370
  • 财政年份:
    2019
  • 资助金额:
    $ 34.83万
  • 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
  • 批准号:
    10216306
  • 财政年份:
    2019
  • 资助金额:
    $ 34.83万
  • 项目类别:
Dynamic Networks and Mechanisms of Allosteric Communication in Proteins
蛋白质变构通讯的动态网络和机制
  • 批准号:
    7933132
  • 财政年份:
    2009
  • 资助金额:
    $ 34.83万
  • 项目类别:
The role of dynamics in enzyme mechanism and allostery
动力学在酶机制和变构中的作用
  • 批准号:
    9979900
  • 财政年份:
    2008
  • 资助金额:
    $ 34.83万
  • 项目类别:
Intra- and Intermolecular Dynamics of Dihydrofolate Reductase
二氢叶酸还原酶的分子内和分子间动力学
  • 批准号:
    7749030
  • 财政年份:
    2008
  • 资助金额:
    $ 34.83万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 34.83万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 34.83万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.83万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.83万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 34.83万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.83万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 34.83万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 34.83万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 34.83万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.83万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了