Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
基本信息
- 批准号:10372370
- 负责人:
- 金额:$ 7.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAffectAllosteric RegulationBehaviorBindingBiochemicalBiologicalBiologyCell physiologyCharacteristicsChemistryChorismate MutaseCommunicationComputing MethodologiesDissectionDistalDistantDrug DesignEnzymesEventExhibitsFundingGoalsKnowledgeLabelLigand BindingLigandsMechanicsMetabolismMethodologyMolecular ConformationMonitorMovementNMR SpectroscopyParentsPathway interactionsPharmaceutical PreparationsProtein EngineeringProteinsRegulationResearchResolutionRoleSamplingSignal TransductionSiteStructureSystemWorkanalogbiophysical techniqueschemical synthesisconformational conversiondesigndimerdrug developmentnovelpromoterprotein structureresponsesmall molecule
项目摘要
Abstract (Parent R01 funded)
Allosteric regulation of protein activity is a physico-mechanical phenomenon that underlies the coordination of
cellular events throughout biology. Signal transduction, metabolism, and other essential cellular processes are
completely reliant on the executions of conformational and dynamic changes that enable allosteric proteins to
communicate between distant sites. To understand such biological mechanisms – and by extension to
understand how to rationally alter cellular processes, either with drugs or protein engineering – is to understand
this fundamental problem of how allosteric regulation works. Yet, even though allosteric regulation has been
recognized for decades and despite the recent realization that dynamics contributes to allostery, our
understanding of allosteric mechanism is still at a rudimentary level. One limitation has been that the roles of
dynamics in allostery have been drawn from just a few systems, most of which lack the classic indicators of
functional allostery. Another limitation is that gaining accurate information on functional dynamics is
experimentally challenging. To identify basic working principles of allostery, mechanisms of allosteric behavior
must be observed in proteins that are “strongly allosteric”, where allosteric movements and signatures will be
more easily identified. In the long term, knowledge of allosteric mechanism will enhance protein research in
general and have a huge positive impact on design of allosteric drugs and allosteric proteins. The focus of this
work will be on the allosteric enzyme chorismate mutase (CM). By all considerations, this enzyme appears to be
ideal for high-resolution dissective studies of its allosteric mechanisms. CM is a canonical allosteric enzyme as
evidenced by a number of characteristics: it is a symmetric dimer with active sites separated by 40 Å; it
undergoes T-to-R conformational transitions; it exhibits homotropic allostery (Hill coefficient = 1.6); and it exhibits
heterotropic allostery with small molecule effectors that modulate activity up (by Trp) or down (by Tyr). CM is 60
kDa which makes it amenable to solution NMR studies, and it is extremely soluble and durable and yields
outstanding quality NMR spectra. The rich allosteric characteristics of CM will allow classical allostery to be
examined experimentally using NMR and other biochemical and biophysical methods (including computations)
in unprecedented detail. In this proposal, Aims 1 and 2 employ NMR, computational methods, and chemical
synthesis to characterize the structural and dynamic features of apo and liganded states of CM in solution. The
responses of CM to binding effectors and a transition state analog will be monitored, all towards the goal of
identification of mechanisms of heterotropic long-range communication. Aim 3 is focused on extending a novel
labeling methodology for monitoring mechanisms of homotropic allostery. “Click” chemistry will be used to
covalently and specifically tether CM promoters together to stabilize samples used for studying the elusive singly
ligated state. This approach will be useful for NMR studies of protein dimers in general.
摘要(母公司R01资助)
蛋白质活性的变构调节是一种物理-机械现象,它是协调
整个生物学中的细胞事件。信号转导、新陈代谢和其他基本的细胞过程
完全依赖于构象和动态变化的执行,使变构蛋白能够
在远程站点之间进行通信。为了理解这种生物机制--并由此延伸到
理解如何合理地改变细胞过程,无论是通过药物还是蛋白质工程-是理解
变构调节如何发挥作用这一根本问题。然而,尽管变构调节一直是
几十年来一直被认识到,尽管最近人们意识到动力有助于变构,但我们的
对变构作用机理的认识还处于初级水平。其中一个限制是,
变构的动力学仅来自几个系统,其中大多数缺乏经典的
功能性变构。另一个限制是获得关于功能动力学的准确信息是
在实验上具有挑战性。识别变构的基本工作原理,变构行为的机理
必须在“强烈变构”的蛋白质中观察到,在这些蛋白质中,变构运动和信号
更容易辨认。从长远来看,对变构机制的了解将促进蛋白质在
并对变构药物和变构蛋白的设计产生了巨大的积极影响。这件事的重点是
工作将在变构酶分支酸变位酶(CM)上进行。综上所述,这种酶似乎是
非常适合于对其变构机理的高分辨率解剖研究。CM是一种典型的变构酶,与
有许多特征证明:它是一个对称的二聚体,活性中心被40?隔开;它
经历T-R构象转变;表现出各向同性变构(Hill系数=1.6);它表现出
具有小分子效应器的异向性变构作用,通过色氨酸(Trp)或酪氨酸(Tyr)调节活性。Cm 60岁
KDA使其易于进行溶液核磁共振研究,并且它具有极高的溶解性和耐用性,并且产量
高质量的核磁共振波谱。CM丰富的变构特性将使经典变构成为
使用核磁共振和其他生化和生物物理方法(包括计算)进行实验检查
以前所未有的细节。在本提案中,目标1和目标2使用核磁共振、计算方法和化学方法
合成以表征溶液中CM的载脂蛋白和配位态的结构和动力学特征。这个
将监测CM对结合效应器和过渡态类似物的反应,所有这些都是为了实现以下目标
各向异性远程通信机制的识别。《目标3》专注于扩展一部小说
同质变构监测机制的标记方法学。“点击”化学将用于
共价且特定地将CM启动子捆绑在一起以稳定用于研究难以捉摸的单独的样品
结扎状态。这种方法对于蛋白质二聚体的核磁共振研究将是有用的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew L Lee其他文献
Prostate Specific Antigen Doubling Time
前列腺特异性抗原倍增时间
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
P. Arlen;F. Bianco;W. Dahut;A. D'Amico;W. Figg;S. Freedland;J. Gulley;P. Kantoff;M. Kattan;Andrew L Lee;M. Regan;O. Sartor - 通讯作者:
O. Sartor
Utility of the percentage of positive prostate biopsies in predicting PSA outcome after radiotherapy for patients with clinically localized prostate cancer.
前列腺活检阳性百分比在预测临床局限性前列腺癌患者放疗后 PSA 结果中的效用。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
U. Selek;Andrew L Lee;L. Levy;D. Kuban - 通讯作者:
D. Kuban
Andrew L Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew L Lee', 18)}}的其他基金
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
- 批准号:
10653812 - 财政年份:2022
- 资助金额:
$ 7.7万 - 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
- 批准号:
10338723 - 财政年份:2022
- 资助金额:
$ 7.7万 - 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
- 批准号:
10691713 - 财政年份:2022
- 资助金额:
$ 7.7万 - 项目类别:
Request for a 500 MHz NMR console and nitrogen-cooled cryoprobe
请求 500 MHz NMR 控制台和氮冷冷冻探头
- 批准号:
10440662 - 财政年份:2022
- 资助金额:
$ 7.7万 - 项目类别:
Equipment Supplement to Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能机制和动力学的设备补充
- 批准号:
10669454 - 财政年份:2022
- 资助金额:
$ 7.7万 - 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
- 批准号:
10021672 - 财政年份:2019
- 资助金额:
$ 7.7万 - 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
- 批准号:
10216306 - 财政年份:2019
- 资助金额:
$ 7.7万 - 项目类别:
Dynamic Networks and Mechanisms of Allosteric Communication in Proteins
蛋白质变构通讯的动态网络和机制
- 批准号:
7933132 - 财政年份:2009
- 资助金额:
$ 7.7万 - 项目类别:
The role of dynamics in enzyme mechanism and allostery
动力学在酶机制和变构中的作用
- 批准号:
9979900 - 财政年份:2008
- 资助金额:
$ 7.7万 - 项目类别:
Intra- and Intermolecular Dynamics of Dihydrofolate Reductase
二氢叶酸还原酶的分子内和分子间动力学
- 批准号:
7749030 - 财政年份:2008
- 资助金额:
$ 7.7万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Studentship