Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
基本信息
- 批准号:10372370
- 负责人:
- 金额:$ 7.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAffectAllosteric RegulationBehaviorBindingBiochemicalBiologicalBiologyCell physiologyCharacteristicsChemistryChorismate MutaseCommunicationComputing MethodologiesDissectionDistalDistantDrug DesignEnzymesEventExhibitsFundingGoalsKnowledgeLabelLigand BindingLigandsMechanicsMetabolismMethodologyMolecular ConformationMonitorMovementNMR SpectroscopyParentsPathway interactionsPharmaceutical PreparationsProtein EngineeringProteinsRegulationResearchResolutionRoleSamplingSignal TransductionSiteStructureSystemWorkanalogbiophysical techniqueschemical synthesisconformational conversiondesigndimerdrug developmentnovelpromoterprotein structureresponsesmall molecule
项目摘要
Abstract (Parent R01 funded)
Allosteric regulation of protein activity is a physico-mechanical phenomenon that underlies the coordination of
cellular events throughout biology. Signal transduction, metabolism, and other essential cellular processes are
completely reliant on the executions of conformational and dynamic changes that enable allosteric proteins to
communicate between distant sites. To understand such biological mechanisms – and by extension to
understand how to rationally alter cellular processes, either with drugs or protein engineering – is to understand
this fundamental problem of how allosteric regulation works. Yet, even though allosteric regulation has been
recognized for decades and despite the recent realization that dynamics contributes to allostery, our
understanding of allosteric mechanism is still at a rudimentary level. One limitation has been that the roles of
dynamics in allostery have been drawn from just a few systems, most of which lack the classic indicators of
functional allostery. Another limitation is that gaining accurate information on functional dynamics is
experimentally challenging. To identify basic working principles of allostery, mechanisms of allosteric behavior
must be observed in proteins that are “strongly allosteric”, where allosteric movements and signatures will be
more easily identified. In the long term, knowledge of allosteric mechanism will enhance protein research in
general and have a huge positive impact on design of allosteric drugs and allosteric proteins. The focus of this
work will be on the allosteric enzyme chorismate mutase (CM). By all considerations, this enzyme appears to be
ideal for high-resolution dissective studies of its allosteric mechanisms. CM is a canonical allosteric enzyme as
evidenced by a number of characteristics: it is a symmetric dimer with active sites separated by 40 Å; it
undergoes T-to-R conformational transitions; it exhibits homotropic allostery (Hill coefficient = 1.6); and it exhibits
heterotropic allostery with small molecule effectors that modulate activity up (by Trp) or down (by Tyr). CM is 60
kDa which makes it amenable to solution NMR studies, and it is extremely soluble and durable and yields
outstanding quality NMR spectra. The rich allosteric characteristics of CM will allow classical allostery to be
examined experimentally using NMR and other biochemical and biophysical methods (including computations)
in unprecedented detail. In this proposal, Aims 1 and 2 employ NMR, computational methods, and chemical
synthesis to characterize the structural and dynamic features of apo and liganded states of CM in solution. The
responses of CM to binding effectors and a transition state analog will be monitored, all towards the goal of
identification of mechanisms of heterotropic long-range communication. Aim 3 is focused on extending a novel
labeling methodology for monitoring mechanisms of homotropic allostery. “Click” chemistry will be used to
covalently and specifically tether CM promoters together to stabilize samples used for studying the elusive singly
ligated state. This approach will be useful for NMR studies of protein dimers in general.
摘要(父R 01资助)
蛋白质活性的变构调节是一种物理机械现象,其是蛋白质活性的协调的基础。
细胞事件贯穿生物学。信号转导、代谢和其他基本的细胞过程,
完全依赖于执行构象和动态变化,使变构蛋白质,
远程站点之间的通信。为了理解这种生物学机制,
了解如何合理地改变细胞过程,无论是药物还是蛋白质工程-就是了解
这个关于变构调节如何起作用的基本问题。然而,尽管变构调节已经被
几十年来,尽管最近认识到动力学有助于变构,
对变构机制的理解仍处于初级水平。一个限制是,
变构中的动态变化仅来自少数系统,其中大多数缺乏经典的指标
功能性变构另一个限制是,获得关于功能动力学的准确信息,
实验挑战明确变构的基本工作原理,变构行为的机制
必须在“强变构”的蛋白质中观察到,其中变构运动和特征将被
更容易识别。从长远来看,对变构机制的了解将促进蛋白质研究,
这是普遍的,并对变构药物和变构蛋白的设计产生了巨大的积极影响。的重点
工作将在变构酶分支酸酯(CM)。从各方面考虑,这种酶似乎是
理想的高分辨率解剖研究其变构机制。CM是一种典型的变构酶,
由许多特征证明:它是一个对称的二聚体,活性位点相隔40 nm;它
经历T-to-R构象转变;其表现出同向变构(Hill系数= 1.6);并且其表现出
具有调节活性上调(通过Trp)或下调(通过Tyr)的小分子效应物的异向性变构。CM 60
kDa,这使得它适合于溶液NMR研究,并且它是极其可溶的和持久的,
高质量的核磁共振谱。CM丰富的变构特性将允许经典的变构被
使用NMR和其他生物化学和生物物理方法(包括计算)进行实验检查
前所未有的细节。在该提案中,目标1和2采用NMR、计算方法和化学方法。
合成以表征溶液中CM的载脂蛋白和配体状态的结构和动力学特征。的
将监测CM对结合效应物和过渡态类似物的反应,所有这些都是为了实现以下目标:
异向远距离通讯机制的确定。目标3的重点是扩展一个新的
用于监测同向性变构机制的标记方法学。“点击”化学将被用来
共价和特异性地将CM启动子拴在一起,以稳定用于研究难以捉摸的单个
连接状态。这种方法将是有用的NMR研究蛋白质二聚体一般。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew L Lee其他文献
Prostate Specific Antigen Doubling Time
前列腺特异性抗原倍增时间
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
P. Arlen;F. Bianco;W. Dahut;A. D'Amico;W. Figg;S. Freedland;J. Gulley;P. Kantoff;M. Kattan;Andrew L Lee;M. Regan;O. Sartor - 通讯作者:
O. Sartor
Utility of the percentage of positive prostate biopsies in predicting PSA outcome after radiotherapy for patients with clinically localized prostate cancer.
前列腺活检阳性百分比在预测临床局限性前列腺癌患者放疗后 PSA 结果中的效用。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
U. Selek;Andrew L Lee;L. Levy;D. Kuban - 通讯作者:
D. Kuban
Andrew L Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew L Lee', 18)}}的其他基金
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
- 批准号:
10653812 - 财政年份:2022
- 资助金额:
$ 7.7万 - 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
- 批准号:
10338723 - 财政年份:2022
- 资助金额:
$ 7.7万 - 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
- 批准号:
10691713 - 财政年份:2022
- 资助金额:
$ 7.7万 - 项目类别:
Request for a 500 MHz NMR console and nitrogen-cooled cryoprobe
请求 500 MHz NMR 控制台和氮冷冷冻探头
- 批准号:
10440662 - 财政年份:2022
- 资助金额:
$ 7.7万 - 项目类别:
Equipment Supplement to Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能机制和动力学的设备补充
- 批准号:
10669454 - 财政年份:2022
- 资助金额:
$ 7.7万 - 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
- 批准号:
10021672 - 财政年份:2019
- 资助金额:
$ 7.7万 - 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
- 批准号:
10216306 - 财政年份:2019
- 资助金额:
$ 7.7万 - 项目类别:
Dynamic Networks and Mechanisms of Allosteric Communication in Proteins
蛋白质变构通讯的动态网络和机制
- 批准号:
7933132 - 财政年份:2009
- 资助金额:
$ 7.7万 - 项目类别:
The role of dynamics in enzyme mechanism and allostery
动力学在酶机制和变构中的作用
- 批准号:
9979900 - 财政年份:2008
- 资助金额:
$ 7.7万 - 项目类别:
Intra- and Intermolecular Dynamics of Dihydrofolate Reductase
二氢叶酸还原酶的分子内和分子间动力学
- 批准号:
7749030 - 财政年份:2008
- 资助金额:
$ 7.7万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 7.7万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 7.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




