Dynamic Networks and Mechanisms of Allosteric Communication in Proteins

蛋白质变构通讯的动态网络和机制

基本信息

  • 批准号:
    7933132
  • 负责人:
  • 金额:
    $ 9.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): How proteins regulate themselves is a fundamental question in biology. Regulation of protein activity drives cell division, metabolism, signal transduction, and therapeutic intervention. The most common and versatile regulatory proteins are allosteric proteins. Allosteric proteins are distinguished by their capacity to respond to ligand binding or chemical modification at one site, and alter ligand binding or activity at a distal site. Although many allosteric proteins have been characterized structurally, and models of allostery exist, most of the details of how allosteric transitions proceed remain unknown. The long-range goal of this research is to experimentally reveal the time-resolved structural processes that constitute allosteric function. Central to the approach to be taken is the idea that proteins are highly dynamic, especially allosteric proteins, and that dynamic motions are an essential component of allosteric conformational change. Classical oligomeric allosteric proteins are too large for in-depth studies of site-specific dynamics by NMR. Therefore, the monomeric, 14 kDa bacterial response regulator CheY protein will be used as a model allosteric domain. CheY is a chemotaxis signal transduction protein that, upon phosphorylation at Asp-57, undergoes a conformational change at a distal surface that modulates binding to the flagellar motor. The ps-ns and ¿s-ms timescale dynamics of CheY will be extensively characterized in the absence and presence of phosphoryl group mimic, BeF3-, using NMR relaxation methods. In separate experiments, long-range thermodynamic couplings will be mapped using high-throughput methodology. Because, recently, long-range communication has been observed in proteins that are not functionally allosteric, mechanisms similar to those in allosteric proteins may exist in non-allosteric proteins, albeit to a lesser extent. The serine protease inhibitor eglin c is a good example of this: conservative mutations in eglin c lead to long-range dynamic effects in the absence of structural change. In the proposed research, four Specific Aims fall into two main thrusts. In the first thrust, patterns of long-range coupling (or "communication") - both dynamic and thermodynamic - will be compared between the non-allosteric eglin c and the allosteric CheY. These comparisons will shed light on any basic differences in coupling networks between allosteric and non-allosteric proteins; they will also provide a test of the role of dynamics in mediating thermodynamic coupling. In the second thrust, the mechanism of intramolecular signal transduction in CheY will be investigated from an NMR dynamics perspective, using CheY's various biological states and mutations that modulate its activity. Overall, by increasing understanding of the biophysical properties and role of dynamics in allostery, this research will help to lay the foundation for the rational design of allosteric proteins and drugs. PUBLIC HEALTH RELEVANCE: Allosteric conformational change in proteins lies at the heart of regulatory processes such as cell division, metabolism, signal transduction, and drug action. This research seeks to understand the dynamic underpinnings of allostery by experimentally contrasting motional dynamics in non-allosteric and allosteric proteins. The small bacterial signal transduction protein CheY will serve as a model allosteric domain. A detailed understanding of allosteric mechanisms will be needed to rationally design proteins and drugs that take advantage of allosteric principles, as well as understand mechanisms of drug resistance.
描述(由适用提供):蛋白质如何调节自身是生物学的基本问题。蛋白质活性的调节驱动细胞分裂,代谢,信号转导和热干预。最常见和多功能的调节蛋白是变构蛋白。变构蛋白的区别是它们在一个位点应对配体结合或化学修饰的能力,并改变不同位点的配体结合或活性。尽管许多变构蛋白在结构上得到了表征,并且存在变构模型,但有关变构转变的大多数细节仍未知。这项研究的远程目标是实验揭示构成变构功能的时间分辨结构过程。要采用的方法的核心是蛋白质是高度动态的,尤其是变构蛋白,而动态运动是变构构象变化的重要组成部分。经典的寡聚变构蛋白太大,无法通过NMR对位点特异性动力学进行深入研究。因此,单体14 kDa细菌反应调节剂Chey蛋白将用作模型变构域。 Chey是一种趋化信号转导蛋白,在ASP-57处的磷酸化后,在远端表面进行构象变化,该构象会调节与鞭毛运动的结合。在使用NMR弛豫方法的情况下,Chey的PS-NS和S-MS时间尺度动力学将在不存在和存在模拟磷酸组的情况下进行广泛表征。在单独的实验中,将使用高通量方法来映射远程热力学耦合。因为最近,在非功能变构的蛋白质中观察到了远距离通信,因此与变构蛋白相似的机制可能存在于非官方蛋白中,尽管在较小程度上。丝氨酸蛋白抑制剂Eglin C就是一个很好的例子:Eglin C中的保守突变导致在没有结构变化的情况下会产生远程动态效应。在拟议的研究中,四个特定目标属于两个主要推力。在第一个推力中,将比较非官方Eglin C和变构CHEY之间的远距离耦合(或“通信”)的模式(或“通信”)。这些比较将阐明变构和非官方蛋白之间耦合网络的任何基本差异。他们还将对动力学在介导热力学耦合中的作用进行测试。在第二个推力中,将利用Chey的各种生物学状态和调节其活性的突变来研究Chey中分子内信号转导的机制。总体而言,通过对生物物理特性和动力学在变构中的作用的了解,这项研究将有助于为变构蛋白和药物的合理设计奠定基础。公共卫生相关性:蛋白质的变构会议变化位于调节过程的核心,例如细胞分裂,代谢,信号转导和药物作用。这项研究旨在通过实验对比非官方和变构蛋白的运动动力学来理解变构的动态基础。小细菌信号转导蛋白Chey将用作模型变构域。对于利用变构原理的理性设计蛋白质和药物,需要对变构机制进行详细的理解,并了解耐药性的机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew L Lee其他文献

Prostate Specific Antigen Doubling Time
前列腺特异性抗原倍增时间
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Arlen;F. Bianco;W. Dahut;A. D'Amico;W. Figg;S. Freedland;J. Gulley;P. Kantoff;M. Kattan;Andrew L Lee;M. Regan;O. Sartor
  • 通讯作者:
    O. Sartor
Utility of the percentage of positive prostate biopsies in predicting PSA outcome after radiotherapy for patients with clinically localized prostate cancer.
前列腺活检阳性百分比在预测临床局限性前列腺癌患者放疗后 PSA 结果中的效用。

Andrew L Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew L Lee', 18)}}的其他基金

Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
  • 批准号:
    10653812
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
  • 批准号:
    10338723
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
  • 批准号:
    10691713
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Request for a 500 MHz NMR console and nitrogen-cooled cryoprobe
请求 500 MHz NMR 控制台和氮冷冷冻探头
  • 批准号:
    10440662
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Equipment Supplement to Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能机制和动力学的设备补充
  • 批准号:
    10669454
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
  • 批准号:
    10021672
  • 财政年份:
    2019
  • 资助金额:
    $ 9.76万
  • 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
  • 批准号:
    10372370
  • 财政年份:
    2019
  • 资助金额:
    $ 9.76万
  • 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
  • 批准号:
    10216306
  • 财政年份:
    2019
  • 资助金额:
    $ 9.76万
  • 项目类别:
The role of dynamics in enzyme mechanism and allostery
动力学在酶机制和变构中的作用
  • 批准号:
    9979900
  • 财政年份:
    2008
  • 资助金额:
    $ 9.76万
  • 项目类别:
Intra- and Intermolecular Dynamics of Dihydrofolate Reductase
二氢叶酸还原酶的分子内和分子间动力学
  • 批准号:
    7749030
  • 财政年份:
    2008
  • 资助金额:
    $ 9.76万
  • 项目类别:

相似国自然基金

基于钙敏感受体的不同激活状态进行多肽变构调节剂筛选以及结构导向的化学修饰改造
  • 批准号:
    22307113
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
GABAB受体复合体变构调节的生理和病理研究
  • 批准号:
    32330049
  • 批准年份:
    2023
  • 资助金额:
    221 万元
  • 项目类别:
    重点项目
热休克蛋白90对calpain-1的变构调节机制及其对鸡肉嫩度的影响
  • 批准号:
    32372406
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
AMPA受体正向变构调节剂快速抗抑郁作用及其神经机制研究
  • 批准号:
    82371524
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
P2X3靶向的无味觉失调的变构调节新策略及用于缓解原因未明难治性咳嗽的新分子发现
  • 批准号:
    32371289
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

O-GlcNac Modulation of GABAergic Transmission
O-GlcNac 对 GABA 能传输的调节
  • 批准号:
    10754746
  • 财政年份:
    2023
  • 资助金额:
    $ 9.76万
  • 项目类别:
Computational design of proteins and protein functions
蛋白质和蛋白质功能的计算设计
  • 批准号:
    10406129
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Tuning PARP-1 retention and release on DNA breaks
调节 DNA 断裂时 PARP-1 的保留和释放
  • 批准号:
    10363534
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Muscarinic modulation of RDoC constructs in primate behavior and fronto-striatal circuits
灵长类行为和额纹状体回路中 RDoC 结构的毒蕈碱调节
  • 批准号:
    10599997
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
  • 批准号:
    10653812
  • 财政年份:
    2022
  • 资助金额:
    $ 9.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了