Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
基本信息
- 批准号:10346720
- 负责人:
- 金额:$ 60.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease pathologyAnatomyAtlasesBase of the BrainBiologyBrainBrain MappingClassificationClinicalComputational TechniqueDataData SetData SourcesDementiaDevelopmentDisease ProgressionEarly DiagnosisFunctional disorderHeterogeneityHourHumanImageImpairmentIndividualLightMagnetic Resonance ImagingMapsMeasuresMethodologyMethodsModelingMonitorMultimodal ImagingNatureNeurodegenerative DisordersPathway interactionsPatientsPatternPhasePopulationProcessPropertySeriesShapesStructureSurfaceSystemTestingTimeTreesWorkbasebiobankcohortcomputerized toolsconnectomecostdeep learningdisease classificationflexibilityimage registrationimaging biomarkerimaging studyimprovedindividual variationinter-individual variationlarge scale datamultimodalityneural networkneuroimagingnormal agingpersonalized diagnosticspersonalized predictionspre-clinicalresponsetooltrend
项目摘要
Project Summary
Alzheimer’s disease (AD) is a heterogeneous neurodegenerative disorder, not only in pathophysiology, but also
at different disease progression stages. Despite numerous studies that have investigated the clinical utility of
magnetic resonance imaging (MRI) based biomarkers in characterizing AD stages from asymptomatic to mildly
symptomatic to dementia, making a personalized precision prediction and early diagnosis of AD is still
challenging. Existing imaging biomarkers are limited in representing significant heterogeneity across different
individuals and at different clinical stages. This challenge originates from the lack of reliable brain landmarks that
can simultaneously characterize and represent robust population correspondences and individual variation
during normal aging and AD progression. In response, this project aims to: 1) Identify a set of brain anchor-
nodes as population landmarks based on both group-wise consistent patterns and individualized anatomical and
connectivity properties during normal aging and AD progression among massive, publicly available neuroimaging
data sources; 2) Develop an efficient individualized shape transformation approach based on deep learning to
map population anchor-nodes to individual brains by flexibly leveraging multimodal individual features; and 3)
Construct a progression tree using anchor-nodes derived brain measures to unveil and represent the wide
spectrum of AD development. Individual subjects can thus be projected to the tree structure to effectively and
conveniently access their clinical status and predict the trend of AD progression. We will test our new frameworks
on four large independent aging/AD cohorts including HCP-Aging, UK Biobank, ADNI and the latest stage of
Open Access Series of Imaging Studies (OASIS-3), and freely release our computational tools and processed
data to the public.
项目概要
阿尔茨海默病(AD)是一种异质性神经退行性疾病,不仅在病理生理学上,而且在
在不同的疾病进展阶段。尽管有大量研究调查了其临床效用
基于磁共振成像 (MRI) 的生物标志物用于表征从无症状到轻度的 AD 阶段
针对痴呆症的症状,对 AD 进行个性化精准预测和早期诊断仍然是
具有挑战性的。现有的成像生物标志物在代表不同生物标志物之间的显着异质性方面受到限制。
个体和不同临床阶段。这一挑战源于缺乏可靠的大脑标志
可以同时表征和表示稳健的群体对应关系和个体差异
在正常衰老和 AD 进展期间。为此,该项目旨在:1)确定一组大脑锚点——
基于分组一致模式和个性化解剖学和
正常衰老和 AD 进展过程中大量公开神经影像的连接特性
数据来源; 2)开发基于深度学习的高效个性化形状变换方法
通过灵活利用多模态个体特征,将群体锚节点映射到个体大脑;和 3)
使用锚节点衍生的大脑测量构建一个进展树来揭示和表示广泛的
AD 发展范围。因此,可以将各个主题投影到树结构,以有效且
方便地了解他们的临床状态并预测 AD 进展趋势。我们将测试我们的新框架
四个大型独立老龄化/AD 队列,包括 HCP-Aging、UK Biobank、ADNI 和最新阶段的
开放获取系列成像研究(OASIS-3),并免费发布我们的计算工具和处理
向公众提供数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Li其他文献
Gang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Li', 18)}}的其他基金
Developing an Individualized Deep Connectome Framework for ADRD Analysis
开发用于 ADRD 分析的个性化深度连接组框架
- 批准号:
10515550 - 财政年份:2022
- 资助金额:
$ 60.99万 - 项目类别:
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10571842 - 财政年份:2022
- 资助金额:
$ 60.99万 - 项目类别:
Infant Functional Connectome Fingerprinting based on Deep Learning
基于深度学习的婴儿功能连接组指纹图谱
- 批准号:
10288361 - 财政年份:2021
- 资助金额:
$ 60.99万 - 项目类别:
Harmonizing and Archiving of Large-scale Infant Neuroimaging Data
大规模婴儿神经影像数据的协调和归档
- 批准号:
10189251 - 财政年份:2021
- 资助金额:
$ 60.99万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10162317 - 财政年份:2018
- 资助金额:
$ 60.99万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
9755508 - 财政年份:2018
- 资助金额:
$ 60.99万 - 项目类别:
Using High Throughput Approach to Identify/Characterize Functional Variants on MS
使用高通量方法在 MS 上识别/表征功能变异
- 批准号:
9670361 - 财政年份:2018
- 资助金额:
$ 60.99万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
9919645 - 财政年份:2018
- 资助金额:
$ 60.99万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
10396127 - 财政年份:2018
- 资助金额:
$ 60.99万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10407000 - 财政年份:2018
- 资助金额:
$ 60.99万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 60.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 60.99万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 60.99万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 60.99万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 60.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 60.99万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 60.99万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 60.99万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 60.99万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 60.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




