Harmonizing and Archiving of Large-scale Infant Neuroimaging Data
大规模婴儿神经影像数据的协调和归档
基本信息
- 批准号:10189251
- 负责人:
- 金额:$ 62.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:2 year old5 year oldAddressAdoptedAdultAge-MonthsArchivesAreaAtlasesBRAIN initiativeBig DataBiologicalBiological PreservationBirthBrainCerebral cortexChildCodeDataData SetDepositionDevelopmentDiffuseEnsureExhibitsFeedbackFundingGoalsGrowthHumanImageImaging technologyInfantInstitutesIntuitionJointsLearningMRI ScansMachine LearningMagnetic Resonance ImagingMapsMethodsMyelinNational Institute of Mental HealthNetwork-basedNeurodevelopmental DisorderPatternPositioning AttributeProcessPropertyProtocols documentationQuality ControlReproducibilityResolutionRiskScanningSeriesSiteSource CodeStrategic PlanningStructureSurfaceTechniquesThickTissuesTravelTwin Multiple BirthUnited States National Institutes of HealthVariantautism spectrum disorderbasebrain abnormalitiescomputational atlascomputerized toolsconnectomecortex mappingcritical perioddata archivedata harmonizationdeep learningdesignimaging studyimprovedinfancyneural networkneuroimagingnovelpostnatalresponsesecondary analysistool
项目摘要
Project Abstract
The first postnatal years are an exceptionally dynamic and critical period of structural and functional development
of the human brain. Many neurodevelopmental disorders are the consequence of abnormal brain development
during this stage. Several NIH-funded studies have recently acquired and released large-scale infant brain MRI
datasets in the National Institute of Mental Health Data Archive (NDA), leading to over 3,000 publically-available
infant MRI scans from multiple imaging sites. Joint analysis of these big data of infant brains will undoubtedly
improve our limited understanding of normative early brain development and neurodevelopmental disorders with
boosted statistical power and reproducibility. However, the processed and harmonized data of these multi-site
infant MR images still remain publically absent, due to the challenges in processing and analyzing infant MR
images, which typically exhibit extremely low tissue contrast, large within-tissue intensity variations, and
regionally-heterogeneous dynamic changes. To address this critical issue, the goal of this project is to
comprehensively process, harmonize, discover and archive large-scale, multi-site public infant MRI datasets to
significantly advance early brain development studies, by taking advantage of our infant-tailored
computational tools and further developing advanced machine learning techniques. In Aim 1, we will
extensively process large-scale infant MRI datasets by adopting our established and recently-improved infant-
dedicated cortical surface-based computational tools and further develop a deep spherical neural network for
quality control of produced cortical property maps. This will lead to quality-ensured vertex-wise maps of multiple
biologically-distinct cortical properties, e.g., cortical thickness, surface area, myelin content, sulcal depth, local
gyrification, curvature and diffusivity. In Aim 2, to remove site effects associated with different scanners and
imaging protocols and meanwhile preserve biological associations, we will harmonize the computed cortical
property maps from multi-site data in Aim 1 by leveraging our surface-to-surface cycle-consistent generative
adversarial networks (S2SGAN) based on the spherical U-Net, without requiring traveling subjects (paired data)
across sites. To further increase the efficiency and learn more robust feature representation in the whole multi-
site data, we propose to extend S2SGAN to jointly harmonize all multi-site cortical property maps using a single
generator. In Aim 3, leveraging the informative growth patterns and gradient information of the harmonized maps
of multiple cortical properties in Aim 2, we will discover distinct cortical regions, by capitalizing on multi-view
nonnegative matrix factorization in a data-driven manner, without making any assumption on the parametric
forms of growth patterns. All our processed data, results, computational tools, and source codes will be deposited
into NDA, NITRC, and GitHub to significantly accelerate the pace of early brain development studies.
项目摘要
出生后的头几年是结构和功能发育的一个异常动态和关键时期
人类大脑。许多神经发育障碍是大脑发育异常的结果
在这个阶段。几个NIH资助的研究最近获得并发布了大规模的婴儿大脑MRI
美国国家心理健康研究所数据档案(NDA)中的数据集,导致超过3,000个公开可用的
多个成像部位的婴儿MRI扫描。对这些婴儿大脑大数据的联合分析无疑将
通过以下方式提高我们对规范早期大脑发育和神经发育障碍的有限了解
提高了统计能力和可重复性。然而,这些多站点的处理和协调数据
由于在处理和分析婴儿MR方面的挑战,婴儿MR图像仍然在医学上缺失
图像,其通常表现出极低的组织对比度、大的组织内强度变化,以及
区域异质性动态变化。为了解决这一关键问题,本项目的目标是
全面处理、协调、发现和存档大规模、多站点公共婴儿MRI数据集,
通过利用我们为婴儿量身定制的
计算工具和进一步开发先进的机器学习技术。在目标1中,我们
广泛处理大规模的婴儿MRI数据集,采用我们建立和最近改进的婴儿-
专用的基于皮层表面的计算工具,并进一步开发一个深球形神经网络,
制作的皮质特性图的质量控制。这将导致质量保证的顶点明智的地图,
生物学上不同的皮质特性,例如,皮质厚度,表面积,髓鞘含量,脑沟深度,局部
旋转、曲率和扩散率。在目标2中,为了消除与不同扫描仪相关的现场影响,
成像协议,同时保留生物关联,我们将协调计算的皮层
通过利用我们的表面到表面周期一致性生成,
对抗网络(S2 SGAN)基于球形U网,不需要移动对象(配对数据)
跨站点。为了进一步提高效率,并在整个多特征表示中学习更鲁棒的特征表示,
站点数据,我们建议扩展S2 SGAN,使用单个
生成器.在目标3中,利用协调地图的信息丰富的增长模式和梯度信息
目标2中的多个皮层特性,我们将通过利用多视图来发现不同的皮层区域,
以数据驱动的方式进行非负矩阵分解,而不对参数进行任何假设
增长模式的形式。我们所有处理过的数据、结果、计算工具和源代码都将存放在
NDA、NITRC和GitHub,以显著加快早期大脑发育研究的步伐。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Li其他文献
Gang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Li', 18)}}的其他基金
Developing an Individualized Deep Connectome Framework for ADRD Analysis
开发用于 ADRD 分析的个性化深度连接组框架
- 批准号:
10515550 - 财政年份:2022
- 资助金额:
$ 62.7万 - 项目类别:
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10571842 - 财政年份:2022
- 资助金额:
$ 62.7万 - 项目类别:
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10346720 - 财政年份:2022
- 资助金额:
$ 62.7万 - 项目类别:
Infant Functional Connectome Fingerprinting based on Deep Learning
基于深度学习的婴儿功能连接组指纹图谱
- 批准号:
10288361 - 财政年份:2021
- 资助金额:
$ 62.7万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10162317 - 财政年份:2018
- 资助金额:
$ 62.7万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
9755508 - 财政年份:2018
- 资助金额:
$ 62.7万 - 项目类别:
Using High Throughput Approach to Identify/Characterize Functional Variants on MS
使用高通量方法在 MS 上识别/表征功能变异
- 批准号:
9670361 - 财政年份:2018
- 资助金额:
$ 62.7万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
9919645 - 财政年份:2018
- 资助金额:
$ 62.7万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
10396127 - 财政年份:2018
- 资助金额:
$ 62.7万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10407000 - 财政年份:2018
- 资助金额:
$ 62.7万 - 项目类别:
相似海外基金
The Language Environment in Fostering 5-Year-Old Children's Voluntary Involvements
培养5岁儿童自愿参与的语言环境
- 批准号:
22K13681 - 财政年份:2022
- 资助金额:
$ 62.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Study of Reading Picture Books In 5-Year-Old Class and the Support Process of the Teachers
五岁班绘本阅读研究及教师支持过程
- 批准号:
19K14156 - 财政年份:2019
- 资助金额:
$ 62.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improving motor skills in 3-5 year old children with Autism Spectrum Disorder: Effects on the family unit.
提高患有自闭症谱系障碍的 3-5 岁儿童的运动技能:对家庭单位的影响。
- 批准号:
386469 - 财政年份:2017
- 资助金额:
$ 62.7万 - 项目类别:
Studentship Programs
Epidemiological study and Creating new diagnostic methods for Neurodevelopmental disorders in 5-year-old children
5岁儿童神经发育障碍流行病学研究及诊断新方法
- 批准号:
16K10239 - 财政年份:2016
- 资助金额:
$ 62.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Differences in motor milestone attainment in 4- and 5-year old children at risk for Developmental Coordination Disorder
有发育协调障碍风险的 4 岁和 5 岁儿童在运动里程碑方面的差异
- 批准号:
324425 - 财政年份:2015
- 资助金额:
$ 62.7万 - 项目类别:
Prevalence and social determinants of developmental outcomes among 5-year-old children with health disorders: A Pan-Canadian study
5 岁儿童健康障碍的患病率和发育结果的社会决定因素:一项泛加拿大研究
- 批准号:
322111 - 财政年份:2015
- 资助金额:
$ 62.7万 - 项目类别:
Operating Grants
Fornative Expressive Behavior in Children's (4 years old and 5 year-old) Artistic Play Activities
儿童(4岁和5岁)艺术游戏活动中的本能表达行为
- 批准号:
26780506 - 财政年份:2014
- 资助金额:
$ 62.7万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The development which is a shift support program to a 1st grader of elementary school from 5-year old children who prevents "a 1st grade of elementary school, problem"
作为防止"小学一年级、问题"的5岁儿童到小学一年级学生的轮班支援计划的展开
- 批准号:
25381292 - 财政年份:2013
- 资助金额:
$ 62.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of behavioural measures of sentence comprehension in 2 to 5 year old children
2至5岁儿童句子理解行为测量的发展
- 批准号:
449402-2013 - 财政年份:2013
- 资助金额:
$ 62.7万 - 项目类别:
University Undergraduate Student Research Awards
Technology development and neuroimaging for 5 year old children with HIV infectio
5 岁 HIV 感染儿童的技术开发和神经影像学
- 批准号:
8333355 - 财政年份:2011
- 资助金额:
$ 62.7万 - 项目类别:














{{item.name}}会员




