Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
基本信息
- 批准号:10407000
- 负责人:
- 金额:$ 38.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-11 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptedAdultAppearanceAreaAtlasesBehavioralBrainBrain DiseasesCerebral cortexChildCognitionCognition DisordersCognitiveConsensusDataData SetDevelopmentDiagnosisDiffuseEarly InterventionEnsureExhibitsFree WillFrequenciesFunctional Magnetic Resonance ImagingGoalsGraphGrowthGrowth DisordersHumanIndividualIndividual DifferencesInfantInvestigationMagnetic Resonance ImagingMapsMeasurementMethodsMotivationMyelinNational Institute of Mental HealthNeurodevelopmental DisorderPathway AnalysisPatternPopulationProcessPropertyReproducibilityRestStatistical sensitivityStrategic PlanningSubgroupSurfaceThickTissuesWeightbasebrain abnormalitiesbrain magnetic resonance imagingcomputerized toolsconnectomecritical perioddiffusion weightedhigh risk infantinter-individual variationmultimodalityneuroimagingnovelnovel strategiespersonalized approachpopulation basedpostnataltool
项目摘要
Project Abstract
The increasing availability of large-scale longitudinal multimodal infant brain MRI datasets, e.g., the Baby
Connectome Project (BCP), provides an unprecedented opportunity to precisely chart the dynamic trajectories
of early brain development, essential for understanding normative growth and neurodevelopmental disorders. A
major barrier is the critical lack of computational tools, atlases and parcellations for cortical surface-based
analysis of the challenging infant MRI, which typically exhibits low tissue contrast and regionally-heterogeneous,
dynamic changes of cortical properties. To fill this gap, we have pioneered a comprehensive set of infant-
dedicated cortical surface analysis tools and atlases. Our tools and discoveries on early brain development
have been highlighted in NIMH’s 2015-2020 Strategic Plan. However, computational approaches are still
lacking for infant cortical parcellation based on the dynamic brain properties from longituidnal multimodal MRI.
Parcellation is a prerequsite in a wide variety of infant neuroimaging applications, e.g., region localization, inter-
individual variability investigation, inter-study comparison, statistical sensitivity boosting, node definition for
network analysis, and feature reduction for identificaiton of brain disorders. Hence, this project is focused on
creating and disseminating novel computational tools for both population-level and individualized infant
cortical parcellation utilizing developmental patterns of multiple complementary brain properties, and
applying them to better understanding of inter-individual variability and early brain development. The
motivation is that the dynamic development of multiple properties (e.g., cortical thickness, folding, diffusivity,
myelin content, surface area, structural and functional connectivity) in infants essentially reflects the rapid
changes of underlying microstructures and their connectivity, which jointly determine the functional principle of
each region. Hence, developmental patterns are ideal for deriving distinct regions in development, microstructure,
function, and connectivity for early brain development studies. To achieve this goal, we propose four specific
aims. In Aim 1, we will develop a novel method for population-level cortical parcellation based on
developmental patterns of multiple properties, by nonlinear fusion of heterogeneous multimodal information
from a large population of infants. In Aim 2, we further propose a novel approach for individualized parcellation
of each infant’s cortical surfaces based on its own multimodal developmental patterns, thus accounting for
remarkable inter-subject variability. We will leverage the population-level parcellation to guide the individualized
parcellation in an iterative manner via graph cuts, thus leading to precise individualized parcellations that are
easily comparable across individuals. In Aim 3, to understand the remarkable inter-individual variability in each
parcellated region, we will discover the representative regional appearance patterns of each cortical property
from a large infant population, based on multi-scale spatial-frequency characterizations of cortical property
maps via spherical wavelets. In Aim 4, leveraging our tools, atlases, and parcellations, we will chart the
multimodal developmental trajectories for each representative pattern of each property and investigate their
relationships with behavioral/cognitive scores. Finally, we will freely release our tools, parcellations and the
processed BCP data to the public.
项目摘要
大规模纵向多模态婴儿脑MRI数据集的日益可用性,例如,宝宝
连接组计划(BCP)为精确绘制动态轨迹提供了前所未有的机会
早期大脑发育,对理解正常生长和神经发育障碍至关重要。一
一个主要的障碍是严重缺乏计算工具,地图集和包裹皮质表面为基础的
分析具有挑战性的婴儿MRI,其通常表现出低组织对比度和区域异质性,
皮质特性的动态变化。为了填补这一空白,我们开创了一套全面的婴儿-
专门的皮质表面分析工具和图谱。我们在早期大脑发育方面的工具和发现
这是NIMH 2015-2020年战略计划的重点。然而,计算方法仍然是
缺乏婴儿皮质分区的基础上,动态脑性能从middnal多模态MRI。
包裹是各种婴儿神经成像应用中的先决条件,例如,区域定位,内部,
个体变异性研究、研究间比较、统计敏感性增强、节点定义
网络分析和特征约简,用于识别大脑疾病。因此,该项目的重点是
为群体水平和个性化婴儿创建和传播新型计算工具
利用多个互补脑特性的发育模式的皮层包裹,以及
应用它们来更好地理解个体间的差异和早期大脑发育。的
动机是多个属性的动态发展(例如,皮质厚度,折叠,扩散率,
髓鞘含量、表面积、结构和功能连接性)基本上反映了婴儿的快速
底层微结构及其连通性的变化,共同决定了
每个区域。因此,发育模式是理想的衍生不同的区域在发展,微观结构,
功能和连接性,用于早期大脑发育研究。为实现这一目标,我们提出四项具体措施。
目标。在目标1中,我们将开发一种新的方法,用于基于
多属性的发展模式,通过非线性融合异质多模态信息
从大量的婴儿身上。在目标2中,我们进一步提出了一种新的个性化包裹方法
每个婴儿的皮质表面基于其自身的多模态发育模式,从而占
受试者间差异显著。我们将利用人口层面的分割来指导个性化的
通过图形切割以迭代方式进行分割,从而产生精确的个性化分割,
很容易在个人之间进行比较。在目标3中,为了了解每个人的显著个体间变异性,
在每个分区中,我们将发现每个皮质特性的代表性区域外观模式
基于皮质特性的多尺度空间频率特征,来自大量婴儿群体
通过球面小波映射。在目标4中,利用我们的工具、地图集和包裹,我们将绘制
多模态发展轨迹的每一个代表性模式的每一个属性,并调查他们的
与行为/认知分数的关系。最后,我们将免费发布我们的工具,包裹和
处理过的BCP数据公开。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Construction of Spatiotemporal Infant Cortical Surface Functional Templates.
- DOI:10.1007/978-3-030-59728-3_24
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Huang Y;Wang F;Wu Z;Chen Z;Zhang H;Wang L;Lin W;Shen D;Li G;UNC/UMN Baby Connectome Project Consortium
- 通讯作者:UNC/UMN Baby Connectome Project Consortium
A computational method for longitudinal mapping of orientation-specific expansion of cortical surface in infants.
婴儿皮层表面定向扩张纵向映射的计算方法
- DOI:10.1016/j.media.2018.07.006
- 发表时间:2018-10
- 期刊:
- 影响因子:10.9
- 作者:Xia J;Wang F;Meng Y;Wu Z;Wang L;Lin W;Zhang C;Shen D;Li G
- 通讯作者:Li G
Mapping developmental regionalization and patterns of cortical surface area from 29 post-menstrual weeks to 2 years of age.
- DOI:10.1073/pnas.2121748119
- 发表时间:2022-08-16
- 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
Disentangled Intensive Triplet Autoencoder for Infant Functional Connectome Fingerprinting.
- DOI:10.1007/978-3-030-59728-3_8
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Hu D;Wang F;Zhang H;Wu Z;Wang L;Lin W;Li G;Shen D
- 通讯作者:Shen D
First-year development of modules and hubs in infant brain functional networks.
- DOI:10.1016/j.neuroimage.2018.10.019
- 发表时间:2019-01-15
- 期刊:
- 影响因子:5.7
- 作者:Wen X;Zhang H;Li G;Liu M;Yin W;Lin W;Zhang J;Shen D
- 通讯作者:Shen D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Li其他文献
Gang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Li', 18)}}的其他基金
Developing an Individualized Deep Connectome Framework for ADRD Analysis
开发用于 ADRD 分析的个性化深度连接组框架
- 批准号:
10515550 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10571842 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10346720 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
Infant Functional Connectome Fingerprinting based on Deep Learning
基于深度学习的婴儿功能连接组指纹图谱
- 批准号:
10288361 - 财政年份:2021
- 资助金额:
$ 38.88万 - 项目类别:
Harmonizing and Archiving of Large-scale Infant Neuroimaging Data
大规模婴儿神经影像数据的协调和归档
- 批准号:
10189251 - 财政年份:2021
- 资助金额:
$ 38.88万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10162317 - 财政年份:2018
- 资助金额:
$ 38.88万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
9755508 - 财政年份:2018
- 资助金额:
$ 38.88万 - 项目类别:
Using High Throughput Approach to Identify/Characterize Functional Variants on MS
使用高通量方法在 MS 上识别/表征功能变异
- 批准号:
9670361 - 财政年份:2018
- 资助金额:
$ 38.88万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
9919645 - 财政年份:2018
- 资助金额:
$ 38.88万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
10396127 - 财政年份:2018
- 资助金额:
$ 38.88万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38.88万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38.88万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38.88万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38.88万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38.88万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38.88万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38.88万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.88万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.88万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38.88万 - 项目类别:
Research Grant