Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
基本信息
- 批准号:9755508
- 负责人:
- 金额:$ 46.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-03 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:2 year oldAddressAdultAgeAge-MonthsAppearanceAtlasesAutomobile DrivingBase of the BrainBrainComplexComputer softwareDataData SetDevelopmentDocumentationEducation and OutreachEnvironmentExhibitsGoalsGrowthHumanImageInfantInfant DevelopmentJointsLabelLearningLettersLifeMRI ScansMagnetic Resonance ImagingMapsMeasurementMethodsMultimodal ImagingNational Institute of Mental HealthNeurodevelopmental DisorderOnline SystemsPaperPlayProbabilityProcessPublicationsReportingResearchResearch PersonnelRoleSeriesShapesSoftware ToolsSourceSpeedStrategic PlanningStructureSurfaceT2 weighted imagingTechniquesTimeTissuesTrainingVariantadaptive learningbasecomputerized toolsconnectomecraniumcritical perioddata acquisitiondiffusion weightedexperiencefile formatgray matterimaging modalityimaging studyimprovedinnovationinteroperabilitynovelpostnatalrandom forestreconstructiontoolwhite matter
项目摘要
Continued Development of Infant Brain Analysis Tools
Abstract:
The increasing availability of infant brain MR images, such as those that will be collected through the Baby
Connectome Project (BCP, on which Dr. Shen is a Co-PI, focusing on data acquisition), affords
unprecedented opportunities for precise charting of dynamic early brain developmental trajectories in
understanding normative and aberrant growth. However, to fully benefit from these datasets, a major barrier
that needs to be overcome is the critical lacking of computational tools for accurate processing and analysis of
infant MRI data, which typically exhibit poor tissue contrast, large within tissue intensity variation, and
regionally-heterogeneous and dynamic changes. To fill this critical gap, in 2012 we pioneered in creating an
infant-centric MRI processing software package, called infant Brain Extraction and Analysis Tool (iBEAT),
and a set of infant-specific atlases, called UNC 0-1-2 Infant Atlases, and further made them freely and publicly
available via NITRC. Over the last 4 years, iBEAT and UNC 0-1-2 Infant Atlases have been downloaded 2900+
and 5600+ times, respectively, and contributed to 160+ independent research papers. As indicated by 30+
support letters, iBEAT is now driving the research for MRI studies of early brain development in many labs
throughout the world. Results produced by iBEAT are also highlighted in the National Institute of Mental
Health (NIMH)'s 2015-2020 Strategic Plan.
This project is dedicated to the continuous development, hardening, and dissemination of iBEAT, by
developing innovative software modules with comprehensive user support. To achieve this goal, we
propose four aims. In Aim 1, we will create an innovative learning-based multi-source information
integration framework for joint skull stripping and tissue segmentation for accurate structural measurements.
Our method employs random forest to adaptively learn the optimal image appearance features from
multimodality images and also informative context features from tissue probability maps. In Aim 2, we will
construct longitudinal infant brain atlases at multiple time points (i.e., 1, 3, 6, 9, and 12 months of age)
for both T1-/T2-weighted and diffusion-weighted MR images. We propose a longitudinally-consistent
sparse representation technique to construct representative atlases with significantly improved structural
details by explicitly dealing with possible misalignments between images even after registration. In Aim 3, we
will develop a novel learning-based approach for cortical topology correction and integrate it, along with
our infant-centric analysis tools and atlases for cortical surfaces, into iBEAT for precise mapping of
dynamic and complex cortical changes in infants. Unlike existing tools that perform poorly for infant brains, we
will incorporate infant-dedicated tools for topology correction, surface reconstruction, registration, parcellation,
and measurements. We will further integrate longitudinal infant cortical surface atlases equipped with
parcellations based on growth trajectories. In Aim 4, we will significantly enhance iBEAT in terms of its
software functionalities as well as user support via systematic outreach and training.
Finally, we will employ iBEAT to process all imaging data from BCP and will release both the iBEAT
software package and the processed BCP data to the public via NITRC.
婴儿大脑分析工具的持续发展
摘要:
越来越多的婴儿大脑MR图像的可用性,例如将通过婴儿收集的图像。
连接组项目(BCP,沈博士是该项目的联合PI,专注于数据采集),
为精确绘制动态早期大脑发育轨迹提供了前所未有的机会,
了解正常和异常的增长。然而,要充分受益于这些数据集,一个主要的障碍
需要克服的是严重缺乏精确处理和分析的计算工具,
婴儿MRI数据,其通常表现出较差的组织对比度,组织内强度变化大,
区域异质性和动态变化。为了填补这一关键空白,2012年,我们率先创建了
以婴儿为中心的MRI处理软件包,称为婴儿脑提取和分析工具(iBEAT),
以及一套专门针对婴儿的地图集,称为"100 - 1 - 2婴儿地图集",并进一步免费公开制作
可通过NITRC获得。在过去的4年里,iBEAT和iBE0 - 1 - 2婴儿护理软件的下载量已超过2900次
和5600+次,贡献了160+篇独立研究论文。30+表示
支持信,iBEAT现在正在推动许多实验室对早期大脑发育的MRI研究
在全世界都有。iBEAT产生的结果也在国家心理研究所得到了强调。
卫生部(NIMH)2015 - 2020战略计划。
该项目致力于iBEAT的持续开发、强化和传播,
开发具有全面用户支持的创新软件模块。为了实现这一目标,我们
提出四个目标。在目标1中,我们将创建一个创新的基于学习的多源信息
用于关节颅骨剥离和组织分割的集成框架,用于精确的结构测量。
我们的方法采用随机森林自适应学习最佳的图像外观特征,
多模态图像以及来自组织概率图的信息背景特征。在目标2中,我们将
在多个时间点构建纵向婴儿脑图谱(即,1、3、6、9和12月龄)
T1/T2加权和弥散加权MR图像。我们提出了一个一致的
稀疏表示技术,用于构建具有显著改进的结构的代表性地图集
通过明确地处理图像之间可能的未对准,即使在配准之后,也可以提供细节。在目标3中,我们
将开发一种新的基于学习的皮层拓扑校正方法,并将其与沿着
我们以婴儿为中心的分析工具和皮质表面地图集,到iBEAT精确映射
动态和复杂的皮质变化。与现有的对婴儿大脑表现不佳的工具不同,我们
将结合婴儿专用工具,用于拓扑校正、表面重建、配准、分割,
和测量.我们将进一步整合纵向婴儿皮质表面图谱,
基于生长轨迹的包裹。在目标4中,我们将在以下方面显著增强iBEAT:
软件功能以及通过系统的外联和培训提供用户支持。
最后,我们将使用iBEAT处理BCP的所有成像数据,并将发布iBEAT
软件包和处理过的BCP数据通过NITRC向公众公布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Li其他文献
Gang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Li', 18)}}的其他基金
Developing an Individualized Deep Connectome Framework for ADRD Analysis
开发用于 ADRD 分析的个性化深度连接组框架
- 批准号:
10515550 - 财政年份:2022
- 资助金额:
$ 46.53万 - 项目类别:
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10571842 - 财政年份:2022
- 资助金额:
$ 46.53万 - 项目类别:
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10346720 - 财政年份:2022
- 资助金额:
$ 46.53万 - 项目类别:
Infant Functional Connectome Fingerprinting based on Deep Learning
基于深度学习的婴儿功能连接组指纹图谱
- 批准号:
10288361 - 财政年份:2021
- 资助金额:
$ 46.53万 - 项目类别:
Harmonizing and Archiving of Large-scale Infant Neuroimaging Data
大规模婴儿神经影像数据的协调和归档
- 批准号:
10189251 - 财政年份:2021
- 资助金额:
$ 46.53万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10162317 - 财政年份:2018
- 资助金额:
$ 46.53万 - 项目类别:
Using High Throughput Approach to Identify/Characterize Functional Variants on MS
使用高通量方法在 MS 上识别/表征功能变异
- 批准号:
9670361 - 财政年份:2018
- 资助金额:
$ 46.53万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
9919645 - 财政年份:2018
- 资助金额:
$ 46.53万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
10396127 - 财政年份:2018
- 资助金额:
$ 46.53万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10407000 - 财政年份:2018
- 资助金额:
$ 46.53万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 46.53万 - 项目类别:
Research Grant