In situ destruction of halogenated Superfund contaminants with biological radical reactions
利用生物自由基反应原位破坏卤化 Superfund 污染物
基本信息
- 批准号:10349970
- 负责人:
- 金额:$ 27.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-04-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AerobicAnaerobic BacteriaBenzeneBioinformaticsBiologicalBiological Response Modifier TherapyBioremediationsChemicalsCobalaminCommunitiesComplementary therapiesComplexCoupledCouplingDioxanesElectron TransportEngineeringEnvironmentEnvironmental HealthEnzymesEthersFoodFutureHumanIn SituLaccaseLeadMediator of activation proteinMetabolic BiotransformationMolecular BiologyMolecular Biology TechniquesNatureOxidation-ReductionPoisonPolybrominated BiphenylsPolychlorinated BiphenylsPrevalenceProcessProtein EngineeringReactionResearchRiskRoleS-AdenosylhomocysteineS-AdenosylmethionineSiteSolventsSourceSuperfundSystemTechnologyTestingTrainingTreatment StepTrichloroethyleneXyleneanalogbasebiological systemsdrinking waterefficacy evaluationground waterhigh throughput screeninginterestmicrobialmicrobial communitymineralizationnovelnovel strategiesperfluorooctane sulfonatepollutantpolybrominated diphenyl etherreceptorremediationresponsesuperfund sitetool
项目摘要
PROJECT 3: SUMMARY/ABSTRACT
Highly halogenated compounds include recently recognized pollutants such as per- and polyfluorinated alkyl
substances (PFAS) as well as legacy contaminants, such as chlorinated solvents, polychlorinated biphenyls
(PCBs) and Polybrominated diphenyl ethers (PBDEs). PFAS and other extremely persistent halogenated
compounds do not exist alone in sites. For example, chlorinated solvents (e.g., trichloroethylene) often coexist
with 1,4-dioxane and PFAS, as well as fuel components including benzene and xylene. Highly halogenated
compounds remain in sites even when co-contaminants have been remediated, posing continued environmental
health risks to human receptors through exposure via drinking water sources and food. As more highly
halogenated chemicals are discovered, remediation strategies need to combine both selectivity and high
reactivity. For decades bioremediation has been attractive due to selective enzymes targeting specific
contaminants. Likewise, chemical redox treatment has garnered interest due to its high reactivity. However, it
takes decades to evolve new specific enzymes in nature and the harsh site conditions after chemical treatment
are drawbacks to both technologies when applied alone. Biological enzymatic systems that produce radicals are
widespread in microbial systems in aerobic and anaerobic environments. We hypothesize that these biological-
radical systems could become a novel remediation approach that combines both selectivity and high
reactivity.
In Aim 1, we propose to employ bioinformatics and molecular biology techniques to study known and putative
laccase systems with multiple chemical mediator compounds in high throughput assays to determine optimized
systems for PFAS treatment. Aim 2 focuses on studying the reactions of anaerobic radical systems, such as
glycyl radical enzymes (GRE) and S-adenosylmethionine (SAM) to study their capability to be engineered future
remediation strategies. We will combine Project 3 and 4 approaches in Aim 3, where chemical treatment will be
used to prime pollutants that make them more amenable to subsequent biological radical treatment, as well as
study the microbial community dynamics before and after chemical treatment. The findings of Project 3 could
provide a new approach of remediation technologies to remediate highly halogenated emerging and legacy
compounds in the environment to protect the environmental health of surrounding communities.
项目3:总结/摘要
高度卤化的化合物包括最近认识到的污染物,例如全氟化烷基和多氟化烷基。
以及遗留污染物,如氯化溶剂、多氯联苯
(多氯联苯)和多溴联苯醚(多溴二苯醚)。PFAS和其他极持久性卤化
化合物并不单独存在于场所中。例如,氯化溶剂(例如,三氯乙烯)经常共存
与1,4-二氧六环和PFAS以及包括苯和二甲苯在内的燃料成分。高度卤化
即使共污染物已得到补救,化合物仍留在场地中,
通过饮用水源和食物接触对人体受体的健康风险。作为更高
卤化化学品的发现,修复策略需要结合联合收割机选择性和高
反应性几十年来,生物修复一直是有吸引力的,由于选择性酶靶向特定的
污染物。同样,化学氧化还原处理由于其高反应性而引起了人们的兴趣。但
在自然界和化学处理后的恶劣场地条件下,
这两种技术在单独应用时都有缺点。产生自由基的生物酶系统是
广泛存在于需氧和厌氧环境中的微生物系统中。我们假设这些生物-
自由基系统可能成为一种新的修复方法,结合了选择性和高
反应性
在目标1中,我们建议采用生物信息学和分子生物学技术来研究已知的和假定的
在高通量测定中使用多种化学介体化合物的漆酶系统来确定优化的
PFAS治疗系统。目标2侧重于研究厌氧自由基系统的反应,如
甘氨酰自由基酶(GRE)和S-腺苷甲硫氨酸(SAM),以研究其未来的工程能力
补救战略。我们将在目标3中结合联合收割机项目3和4的方法,其中化学处理将
用于引发污染物,使其更适合随后的生物彻底处理,以及
研究了化学处理前后微生物群落动态。项目3的结果可以
提供一种新的补救技术方法,以补救新出现和遗留的高卤化
环境中的化合物,以保护周围社区的环境健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lisa Alvarez-Cohen其他文献
Lisa Alvarez-Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lisa Alvarez-Cohen', 18)}}的其他基金
Metabolic Interactions Supporting Effective TCE Bioremediation under Various Biog
不同生物条件下支持有效 TCE 生物修复的代谢相互作用
- 批准号:
8756564 - 财政年份:2014
- 资助金额:
$ 27.89万 - 项目类别:
Metabolic Interactions Supporting Effective TCE Bioremediation under Various Biog
不同生物条件下支持有效 TCE 生物修复的代谢相互作用
- 批准号:
9070730 - 财政年份:2014
- 资助金额:
$ 27.89万 - 项目类别:
Project 4: Application of Comparative Genomics, Transcriptomics, & Proteomics Opt
项目4:比较基因组学、转录组学的应用,
- 批准号:
7792406 - 财政年份:
- 资助金额:
$ 27.89万 - 项目类别:
Project 4: Meta-Omics of Microbial Communities Involved in Bioremediation
项目 4:参与生物修复的微生物群落的元组学
- 批准号:
8116786 - 财政年份:
- 资助金额:
$ 27.89万 - 项目类别:
Project 4: Application of Comparative Genomics, Transcriptomics, & Proteomics Opt
项目4:比较基因组学、转录组学的应用,
- 批准号:
7600448 - 财政年份:
- 资助金额:
$ 27.89万 - 项目类别:
Project 6: Microbial Communities that Bioremediate Chemical Mixtures
项目 6:生物修复化学混合物的微生物群落
- 批准号:
9919588 - 财政年份:
- 资助金额:
$ 27.89万 - 项目类别:
Project 6: Microbial Communities that Bioremediate Chemical Mixtures
项目 6:生物修复化学混合物的微生物群落
- 批准号:
9260368 - 财政年份:
- 资助金额:
$ 27.89万 - 项目类别:
Project 4: Application of Comparative Genomics, Transcriptomics, & Proteomics Opt
项目4:比较基因组学、转录组学的应用,
- 批准号:
8063133 - 财政年份:
- 资助金额:
$ 27.89万 - 项目类别:
相似海外基金
Identification and isolation of anaerobic bacteria that degrade bacterial cell wall
降解细菌细胞壁的厌氧菌的鉴定与分离
- 批准号:
22H02487 - 财政年份:2022
- 资助金额:
$ 27.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enzymology of cofactor and amino acid metabolism in anaerobic bacteria
厌氧菌辅助因子和氨基酸代谢的酶学
- 批准号:
RGPIN-2022-03200 - 财政年份:2022
- 资助金额:
$ 27.89万 - 项目类别:
Discovery Grants Program - Individual
High-throughput isolation of anaerobic bacteria
厌氧菌的高通量分离
- 批准号:
572711-2022 - 财政年份:2022
- 资助金额:
$ 27.89万 - 项目类别:
University Undergraduate Student Research Awards
Elucidating the mechanisms of O2-sensitivity of anaerobic bacteria Bifidobacterium.
阐明厌氧菌双歧杆菌的 O2 敏感性机制。
- 批准号:
22K07058 - 财政年份:2022
- 资助金额:
$ 27.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automatic and accurate identification of aerobic bacteria, anaerobic bacteria, yeasts, and fungi in clinical samples derived from animals and from feed for pets
自动、准确地鉴定来自动物和宠物饲料的临床样品中的需氧细菌、厌氧细菌、酵母菌和真菌
- 批准号:
10440741 - 财政年份:2021
- 资助金额:
$ 27.89万 - 项目类别:
Regulation of virulence in fungi under coculture condition with anaerobic bacteria
厌氧菌共培养条件下真菌毒力的调节
- 批准号:
21K07009 - 财政年份:2021
- 资助金额:
$ 27.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Polymicrobial interactions between commensal obligate anaerobic bacteria and cystic fibrosis pathogen P. aeruginosa
共生专性厌氧菌与囊性纤维化病原体铜绿假单胞菌之间的多种微生物相互作用
- 批准号:
10275319 - 财政年份:2021
- 资助金额:
$ 27.89万 - 项目类别:
Platform for the automated isolation and characterization of anaerobic bacteria
厌氧菌自动分离和表征平台
- 批准号:
445552570 - 财政年份:2020
- 资助金额:
$ 27.89万 - 项目类别:
Major Research Instrumentation
Development of therapy for triple negative breast cancer using anaerobic bacteria
利用厌氧菌开发三阴性乳腺癌疗法
- 批准号:
19K16452 - 财政年份:2019
- 资助金额:
$ 27.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of gene engineering method for anaerobic bacteria for efficient bio-hydrogen production
开发厌氧菌高效生物制氢的基因工程方法
- 批准号:
18K11708 - 财政年份:2018
- 资助金额:
$ 27.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)