Function-based exploration of genetic variation at genome-scale
基于功能的基因组规模遗传变异探索
基本信息
- 批准号:10367604
- 负责人:
- 金额:$ 78.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-09 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAllelesBindingBiological ModelsCRISPR/Cas technologyCell LineCell modelCellsChIP-seqChromatinChromosome 11ChromosomesClinicalClustered Regularly Interspaced Short Palindromic RepeatsCodeComplexComputer ModelsCouplingDNADNA sequencingDNase I hypersensitive sites sequencingDataData SetDiseaseElementsEngineered GeneEngineeringEnhancersFutureGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGenetic VariationGenomeGenomicsHi-CHumanHuman ChromosomesHuman EngineeringIndividualKnowledgeLinkLocationLogicMeasuresMediatingMethodsModelingMolecularNucleic Acid Regulatory SequencesOrganismOutcomePerformancePhenotypePrimary Cell CulturesProcessProteinsReadingRegulator GenesRegulatory ElementReportingResolutionTechnologyTestingTimeTissuesTrainingUntranslated RNAVariantbasebase editingcausal variantcell typeclinically relevantcostdisease phenotypedisorder riskeffective therapyfunctional genomicsgene regulatory networkgenetic elementgenetic variantgenome editinggenome sequencinggenome wide association studygenome-widegenomic datagenomic toolsimprovedmachine learning modelnovelnovel strategiesprecision medicinepredictive modelingpromoterscreeningtooltraittranscription factortranscriptome sequencingtranscriptomicsvariant of unknown significance
项目摘要
PROJECT SUMMARY
Genome-wide association studies have discovered thousands of genetic variants associated with phenotypic
traits such as disease risk. Most of the associated variation lies within non-coding regions of the genome and
the causative effects of those variants remain largely unknown. The sparsity of knowledge on interactions
between the coding and non-coding regulatory parts of the genome makes the prediction of variant function
solely from genome sequence and location impossible. We propose to experimentally uncover the functional
relevance of genetic variants at a large scale, by perturbing variants and genetic elements containing variants,
and reading out the direct consequences of those perturbations on gene regulation. To this end, we propose to
apply our recently developed CRISPR/Cas9 functional genomics screening technology with targeted single-cell
transcriptomic readouts (targeted Perturb-seq or TAP-Seq in short) to enable systematic interrogation of non-
coding regions and genetic variation therein. First, we will apply our targeted Perturb-seq to decipher the
regulatory circuitry encoded on an entire human chromosome by systematically perturbing all major genetic
elements (enhancers, protein-coding and lncRNA genes). This extensive data set will enable to decipher the
complex regulatory networks controlling gene expression on the selected chromosome. Next, we will uncover
causal regulatory variants in these regions by coupling high-throughput precision genome editing to
simultaneous single-cell genomic and transcriptomic readout. Using this novel approach, we will be able to
decipher the functional impact of genetic variants on gene expression and derive rules by which genetic variation
perturbs gene regulatory processes. We will integrate the generated data with available functional genomics
data, such as transcription factor binding (ChIP-seq), chromatin accessibility (ATAC-seq, DNAse-seq) and
interactions in 3D (Hi-C), in order to train machine learning models to derive rules of the observed regulatory
interactions. These models will be applied to decipher the molecular mechanisms underlying the regulatory logic,
and to predict regulatory interactions and variants throughout the genome and across cell types. Selected
predictions will be experimentally validated using the established perturbation technologies, to verify clinically
relevant predictions and improve the performance of the predictive models. Taken together, this project will
answer fundamental questions in gene regulation, uncover the mechanisms by which genetic variation impacts
gene expression, and create datasets and computational models as valuable tools for interpreting results from
GWAS, eQTL and clinical genomic studies.
项目摘要
全基因组关联研究发现了数千种与表型相关的遗传变异,
比如疾病风险。大多数相关的变异位于基因组的非编码区,
这些变异体的致病作用在很大程度上仍不清楚。关于相互作用的知识的稀疏性
基因组的编码和非编码调控部分之间的相互作用,
仅仅依靠基因组序列和位置是不可能的。我们建议通过实验来揭示功能
大规模遗传变异的相关性,通过干扰变异和含有变异的遗传元件,
并阅读出这些扰动对基因调控的直接影响。为此,我们建议
应用我们最近开发的CRISPR/Cas9功能基因组学筛选技术,
转录组学读出(简称为靶向Perturb-Seq或TAP-Seq),以实现对非转录组的系统询问。
编码区及其遗传变异。首先,我们将应用我们有针对性的Perturb-seq来破译
在整个人类染色体上编码的调节电路,通过系统地干扰所有主要的遗传基因,
元件(增强子、蛋白质编码和lncRNA基因)。这一广泛的数据集将使破译
控制所选染色体上基因表达的复杂调控网络。接下来,我们将揭开
通过将高通量精确基因组编辑与
同时进行单细胞基因组和转录组读出。使用这种新方法,我们将能够
破译遗传变异对基因表达的功能影响,并推导出遗传变异
干扰基因调控过程。我们将把生成的数据与现有的功能基因组学相结合
数据,如转录因子结合(ChIP-seq),染色质可及性(ATAC-seq,DNAse-seq)和
3D(Hi-C)中的交互,以便训练机器学习模型来导出所观察到的监管规则。
交互.这些模型将被应用于破译调控逻辑背后的分子机制,
并预测整个基因组和跨细胞类型的调控相互作用和变异。选择
预测将使用已建立的扰动技术进行实验验证,以验证临床
相关的预测,并提高预测模型的性能。总的来说,该项目将
回答基因调控的基本问题,揭示遗传变异影响的机制,
基因表达,并创建数据集和计算模型作为解释结果的有价值的工具,
GWAS、eQTL和临床基因组研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lars M Steinmetz其他文献
Lars M Steinmetz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lars M Steinmetz', 18)}}的其他基金
EDGE CMT: Dissecting complex traits in wild isolates of yeast by high-throughput genome editing
EDGE CMT:通过高通量基因组编辑剖析野生酵母分离物的复杂性状
- 批准号:
10559617 - 财政年份:2022
- 资助金额:
$ 78.69万 - 项目类别:
EDGE CMT: Dissecting complex traits in wild isolates of yeast by high-throughput genome editing
EDGE CMT:通过高通量基因组编辑剖析野生酵母分离物的复杂性状
- 批准号:
10452781 - 财政年份:2022
- 资助金额:
$ 78.69万 - 项目类别:
Function-based exploration of genetic variation at genome-scale
基于功能的基因组规模遗传变异探索
- 批准号:
10701670 - 财政年份:2022
- 资助金额:
$ 78.69万 - 项目类别:
Capturing the phenotypic landscape of single-nucleotide variation via systematic genome editing
通过系统基因组编辑捕获单核苷酸变异的表型景观
- 批准号:
10390038 - 财政年份:2017
- 资助金额:
$ 78.69万 - 项目类别:
Capturing the phenotypic landscape of single-nucleotide variation via systematic genome editing
通过系统基因组编辑捕获单核苷酸变异的表型景观
- 批准号:
9978073 - 财政年份:2017
- 资助金额:
$ 78.69万 - 项目类别:
Capturing the phenotypic landscape of single-nucleotide variation via systematic genome editing
通过系统基因组编辑捕获单核苷酸变异的表型景观
- 批准号:
10218202 - 财政年份:2017
- 资助金额:
$ 78.69万 - 项目类别:
Mitochondrial to nuclear gene transfer via synthetic evolution
通过合成进化从线粒体到核基因转移
- 批准号:
8837172 - 财政年份:2015
- 资助金额:
$ 78.69万 - 项目类别:
Mitochondrial to nuclear gene transfer via synthetic evolution
通过合成进化从线粒体到核基因转移
- 批准号:
9269097 - 财政年份:2015
- 资助金额:
$ 78.69万 - 项目类别:
相似国自然基金
基于ATAC-seq与DNA甲基化测序探究染色质可及性对莲两生态型地下茎适应性分化的作用机制
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
利用ATAC-seq联合RNA-seq分析TOP2A介导的HCC肿瘤细胞迁移侵
袭的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
靶向治疗动态调控肺癌细胞DNA可接近性的ATAC-seq分析
- 批准号:81802809
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
运用ATAC-seq技术分析染色质可接近性对犏牛初级精母细胞基因表达的调控作用
- 批准号:31802046
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq和RNA-seq研究CWIN调控采后番茄果实耐冷性作用机制
- 批准号:31801915
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq高精度预测染色质相互作用的新方法和基于增强现实的3D基因组数据可视化
- 批准号:31871331
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Project #2 Integrated single-nucleus multi-omics (ATAC-seq+RNA-seq or chromatin accessibility + RNA-seq) of human TGs
项目
- 批准号:
10806548 - 财政年份:2023
- 资助金额:
$ 78.69万 - 项目类别:
A transposase system for integrative ChIP-exo and ATAC-seq analysis at single-cell resolution
用于单细胞分辨率综合 ChIP-exo 和 ATAC-seq 分析的转座酶系统
- 批准号:
10210424 - 财政年份:2018
- 资助金额:
$ 78.69万 - 项目类别:
EAPSI: Developing Single Nucleus ATAC-seq to Map the Ageing Epigenome
EAPSI:开发单核 ATAC-seq 来绘制衰老表观基因组图谱
- 批准号:
1714070 - 财政年份:2017
- 资助金额:
$ 78.69万 - 项目类别:
Fellowship Award
A cloud-based learning module to analyze ATAC-seq and single cell ATAC-seq data
基于云的学习模块,用于分析 ATAC-seq 和单细胞 ATAC-seq 数据
- 批准号:
10558379 - 财政年份:2001
- 资助金额:
$ 78.69万 - 项目类别: