Function-based exploration of genetic variation at genome-scale
基于功能的基因组规模遗传变异探索
基本信息
- 批准号:10701670
- 负责人:
- 金额:$ 70.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-09 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAllelesBindingBiological ModelsCRISPR/Cas technologyCell LineCell modelCellsChromatinChromosome 11ChromosomesClinicalClustered Regularly Interspaced Short Palindromic RepeatsCodeComplexComputer ModelsCouplingDNADNA sequencingDNase I hypersensitive sites sequencingDataData SetDiseaseElementsEngineered GeneEngineeringEnhancersFutureGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGenetic VariationGenomeGenomicsHi-CHumanHuman ChromosomesHuman EngineeringIndividualKnowledgeLinkLocationLogicMeasuresMediatingMethodsModelingMolecularNucleic Acid Regulatory SequencesOrganismOutcomePerformancePhenotypePrimary Cell CulturesProcessProteinsReadingRegulator GenesRegulatory ElementRelaxationReportingResolutionTechnologyTestingTimeTissuesTrainingUntranslated RNAVariantbase editingcausal variantcell typeclinically relevantcostdisease phenotypedisorder riskeffective therapyempowermentfunctional genomicsgene regulatory networkgenetic elementgenetic variantgenome editinggenome sequencinggenome wide association studygenome-widegenomic datagenomic toolsimprovedmachine learning modelnovelnovel strategiesprecision medicinepredictive modelingpromoterscreeningtooltraittranscription factortranscriptome sequencingtranscriptomicsvariant of unknown significance
项目摘要
PROJECT SUMMARY
Genome-wide association studies have discovered thousands of genetic variants associated with phenotypic
traits such as disease risk. Most of the associated variation lies within non-coding regions of the genome and
the causative effects of those variants remain largely unknown. The sparsity of knowledge on interactions
between the coding and non-coding regulatory parts of the genome makes the prediction of variant function
solely from genome sequence and location impossible. We propose to experimentally uncover the functional
relevance of genetic variants at a large scale, by perturbing variants and genetic elements containing variants,
and reading out the direct consequences of those perturbations on gene regulation. To this end, we propose to
apply our recently developed CRISPR/Cas9 functional genomics screening technology with targeted single-cell
transcriptomic readouts (targeted Perturb-seq or TAP-Seq in short) to enable systematic interrogation of non-
coding regions and genetic variation therein. First, we will apply our targeted Perturb-seq to decipher the
regulatory circuitry encoded on an entire human chromosome by systematically perturbing all major genetic
elements (enhancers, protein-coding and lncRNA genes). This extensive data set will enable to decipher the
complex regulatory networks controlling gene expression on the selected chromosome. Next, we will uncover
causal regulatory variants in these regions by coupling high-throughput precision genome editing to
simultaneous single-cell genomic and transcriptomic readout. Using this novel approach, we will be able to
decipher the functional impact of genetic variants on gene expression and derive rules by which genetic variation
perturbs gene regulatory processes. We will integrate the generated data with available functional genomics
data, such as transcription factor binding (ChIP-seq), chromatin accessibility (ATAC-seq, DNAse-seq) and
interactions in 3D (Hi-C), in order to train machine learning models to derive rules of the observed regulatory
interactions. These models will be applied to decipher the molecular mechanisms underlying the regulatory logic,
and to predict regulatory interactions and variants throughout the genome and across cell types. Selected
predictions will be experimentally validated using the established perturbation technologies, to verify clinically
relevant predictions and improve the performance of the predictive models. Taken together, this project will
answer fundamental questions in gene regulation, uncover the mechanisms by which genetic variation impacts
gene expression, and create datasets and computational models as valuable tools for interpreting results from
GWAS, eQTL and clinical genomic studies.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lars M Steinmetz其他文献
Lars M Steinmetz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lars M Steinmetz', 18)}}的其他基金
EDGE CMT: Dissecting complex traits in wild isolates of yeast by high-throughput genome editing
EDGE CMT:通过高通量基因组编辑剖析野生酵母分离物的复杂性状
- 批准号:
10559617 - 财政年份:2022
- 资助金额:
$ 70.82万 - 项目类别:
EDGE CMT: Dissecting complex traits in wild isolates of yeast by high-throughput genome editing
EDGE CMT:通过高通量基因组编辑剖析野生酵母分离物的复杂性状
- 批准号:
10452781 - 财政年份:2022
- 资助金额:
$ 70.82万 - 项目类别:
Function-based exploration of genetic variation at genome-scale
基于功能的基因组规模遗传变异探索
- 批准号:
10367604 - 财政年份:2022
- 资助金额:
$ 70.82万 - 项目类别:
Capturing the phenotypic landscape of single-nucleotide variation via systematic genome editing
通过系统基因组编辑捕获单核苷酸变异的表型景观
- 批准号:
10390038 - 财政年份:2017
- 资助金额:
$ 70.82万 - 项目类别:
Capturing the phenotypic landscape of single-nucleotide variation via systematic genome editing
通过系统基因组编辑捕获单核苷酸变异的表型景观
- 批准号:
9978073 - 财政年份:2017
- 资助金额:
$ 70.82万 - 项目类别:
Capturing the phenotypic landscape of single-nucleotide variation via systematic genome editing
通过系统基因组编辑捕获单核苷酸变异的表型景观
- 批准号:
10218202 - 财政年份:2017
- 资助金额:
$ 70.82万 - 项目类别:
Mitochondrial to nuclear gene transfer via synthetic evolution
通过合成进化从线粒体到核基因转移
- 批准号:
8837172 - 财政年份:2015
- 资助金额:
$ 70.82万 - 项目类别:
Mitochondrial to nuclear gene transfer via synthetic evolution
通过合成进化从线粒体到核基因转移
- 批准号:
9269097 - 财政年份:2015
- 资助金额:
$ 70.82万 - 项目类别:
相似国自然基金
基于ATAC-seq与DNA甲基化测序探究染色质可及性对莲两生态型地下茎适应性分化的作用机制
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
利用ATAC-seq联合RNA-seq分析TOP2A介导的HCC肿瘤细胞迁移侵
袭的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
靶向治疗动态调控肺癌细胞DNA可接近性的ATAC-seq分析
- 批准号:81802809
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
运用ATAC-seq技术分析染色质可接近性对犏牛初级精母细胞基因表达的调控作用
- 批准号:31802046
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq和RNA-seq研究CWIN调控采后番茄果实耐冷性作用机制
- 批准号:31801915
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq高精度预测染色质相互作用的新方法和基于增强现实的3D基因组数据可视化
- 批准号:31871331
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Project #2 Integrated single-nucleus multi-omics (ATAC-seq+RNA-seq or chromatin accessibility + RNA-seq) of human TGs
项目
- 批准号:
10806548 - 财政年份:2023
- 资助金额:
$ 70.82万 - 项目类别:
A transposase system for integrative ChIP-exo and ATAC-seq analysis at single-cell resolution
用于单细胞分辨率综合 ChIP-exo 和 ATAC-seq 分析的转座酶系统
- 批准号:
10210424 - 财政年份:2018
- 资助金额:
$ 70.82万 - 项目类别:
EAPSI: Developing Single Nucleus ATAC-seq to Map the Ageing Epigenome
EAPSI:开发单核 ATAC-seq 来绘制衰老表观基因组图谱
- 批准号:
1714070 - 财政年份:2017
- 资助金额:
$ 70.82万 - 项目类别:
Fellowship Award
A cloud-based learning module to analyze ATAC-seq and single cell ATAC-seq data
基于云的学习模块,用于分析 ATAC-seq 和单细胞 ATAC-seq 数据
- 批准号:
10558379 - 财政年份:2001
- 资助金额:
$ 70.82万 - 项目类别:














{{item.name}}会员




