Validating of Machine Learning-Based EEG Treatment Biomarkers in Depression
验证基于机器学习的脑电图治疗抑郁症生物标志物
基本信息
- 批准号:10366060
- 负责人:
- 金额:$ 101.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAntidepressive AgentsAwardBase of the BrainBiological FactorsBiological MarkersCaringClinicClinicalClinical TreatmentComputer ModelsComputer softwareDataData AnalysesData SetDevelopmentElectroencephalographyEnrollmentExtravasationFeedbackFundingInterventionLaboratoriesLeadMachine LearningMapsMedical DeviceMental DepressionMental disordersMethodsNeurosciencesOutcomePathway interactionsPatient TriagePatientsPatternPerformancePharmaceutical PreparationsPharmacologyPhasePlacebosProceduresPsychiatryRegulationResearchResistanceResistance profileScientistSeedsSignal TransductionSmall Business Innovation Research GrantSourceSupervisionSystemTestingTrainingTraining ProgramsTreatment outcomeUnited States National Institutes of HealthWorkbasebiological heterogeneitycandidate markerclinical carecohortcommercializationcomorbiditycomputerized data processingcostdata acquisitiondepressed patientindividual patientmeetingsnovelpatient stratificationpatient subsetsprogramsprospectiverepetitive transcranial magnetic stimulationresponsesoftware developmentsupervised learningtherapy resistanttooltreatment optimizationtreatment responsetreatment-resistant depressionunsupervised learning
项目摘要
SUMMARY/ABSTRACT
The overarching aim of Alto Neuroscience is to advance brain-based biomarkers for psychiatric disorders in
order to both optimize treatment pathways and drive the development of novel pharmacological and non-
pharmacological interventions. Alto does this by developing and applying sophisticated machine learning
computational models to electroencephalography (EEG) data collected at scale in real-world clinical treatment
contexts. Specifically, in this direct-to-phase II SBIR proposal we will refine, and then independently validate,
two EEG-based candidate biomarkers we have identified for stratifying patients with depression in a manner that
both factors biological heterogeneity and informs treatment response. One of our biomarkers was derived in a
“top-down” (i.e. supervised) manner by trying to directly predict treatment outcome, while the other biomarker
presents a complimentary “bottom-up” (i.e. unsupervised) approach that begins by first identifying the most
biologically homogeneous subset of patients and then testing the treatment relevance of the subtyping. Together,
these findings represent very robust individual patient-level treatment-relevant EEG biomarkers, and in both
cases, help define a critically-important objective approach to prospectively identifying and treating treatment-
resistant depressed patients. A successful outcome of the proposed work would yield the first FDA-cleared
biomarkers for stratifying psychiatric conditions. It would also provide a basis for targeted development of
pharmacological and non-pharmacological interventions based on the EEG biomarkers. Both outcomes hold
substantial commercial value and exciting potential for transforming psychiatry.
总结/摘要
Alto Neuroscience的首要目标是推进基于大脑的精神疾病生物标志物,
为了优化治疗途径,并推动新的药理学和非药理学的发展,
药物干预。Alto通过开发和应用复杂的机器学习来做到这一点
在现实世界的临床治疗中大规模收集脑电图(EEG)数据的计算模型
contexts.具体来说,在这个直接进入第二阶段的SBIR提案中,我们将完善,然后独立验证,
我们已经确定了两种基于EEG的候选生物标志物,用于对抑郁症患者进行分层,
这两个因素都是生物异质性的因素,并为治疗反应提供信息。我们的一个生物标志物是从一个
通过尝试直接预测治疗结果,以“自上而下”(即监督)的方式,而其他生物标志物
提出了一个互补的“自下而上”(即无监督)的方法,首先确定最
生物学同质的患者子集,然后测试亚型的治疗相关性。我们一起努力,
这些发现代表了非常强大的个体患者水平的治疗相关EEG生物标志物,
病例,帮助定义一个至关重要的客观方法,以前瞻性地识别和治疗治疗-
顽固的抑郁症患者拟议工作的成功结果将产生第一个FDA批准的
用于对精神疾病进行分层的生物标志物。它还将为有针对性地发展
基于EEG生物标志物的药理学和非药理学干预。两种结果都成立
巨大的商业价值和令人兴奋的潜力,改变精神病学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amit Etkin其他文献
Amit Etkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amit Etkin', 18)}}的其他基金
Validating of Machine Learning-Based EEG Treatment Biomarkers in Depression
验证基于机器学习的脑电图治疗抑郁症生物标志物
- 批准号:
10009501 - 财政年份:2020
- 资助金额:
$ 101.65万 - 项目类别:
Validating of Machine Learning-Based EEG Treatment Biomarkers in Depression
验证基于机器学习的脑电图治疗抑郁症生物标志物
- 批准号:
10116492 - 财政年份:2020
- 资助金额:
$ 101.65万 - 项目类别:
Assessing an electroencephalography (EEG) biomarker of response to transcranial magnetic stimulation for major depression
评估重度抑郁症对经颅磁刺激反应的脑电图 (EEG) 生物标志物
- 批准号:
9933192 - 财政年份:2020
- 资助金额:
$ 101.65万 - 项目类别:
A "Circuits-First" Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
10214488 - 财政年份:2019
- 资助金额:
$ 101.65万 - 项目类别:
A "Circuits-First" Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
10000142 - 财政年份:2019
- 资助金额:
$ 101.65万 - 项目类别:
A "Circuits-First" Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
10019435 - 财政年份:2019
- 资助金额:
$ 101.65万 - 项目类别:
A Circuit Approach to Mechanisms and Predictors of Topiramate Response
托吡酯反应机制和预测因子的电路方法
- 批准号:
10473684 - 财政年份:2018
- 资助金额:
$ 101.65万 - 项目类别:
A Circuit Approach to Mechanisms and Predictors of Topiramate Response
托吡酯反应机制和预测因子的电路方法
- 批准号:
10237286 - 财政年份:2018
- 资助金额:
$ 101.65万 - 项目类别:
A “Circuits-First” Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
9552929 - 财政年份:2017
- 资助金额:
$ 101.65万 - 项目类别:
A “Circuits-First” Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
9339858 - 财政年份:2017
- 资助金额:
$ 101.65万 - 项目类别: