Validating of Machine Learning-Based EEG Treatment Biomarkers in Depression
验证基于机器学习的脑电图治疗抑郁症生物标志物
基本信息
- 批准号:10116492
- 负责人:
- 金额:$ 118.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAntidepressive AgentsAwardBase of the BrainBiologicalBiological FactorsBiological MarkersCaringClinicClinicalClinical TreatmentComputer ModelsComputer softwareDataData AnalysesData SetDevelopmentElectroencephalographyEnrollmentExtravasationFeedbackFundingInterventionLaboratoriesLeadMachine LearningMapsMedical DeviceMental DepressionMental disordersMethodsNeurosciencesOutcomePathway interactionsPatient TriagePatientsPatternPerformancePharmaceutical PreparationsPharmacologyPhasePlacebosProceduresPsychiatryRegulationResearchResistanceResistance profileScientistSeedsSignal TransductionSmall Business Innovation Research GrantSourceSupervisionSystemTestingTrainingTraining ProgramsTreatment outcomeUnited States National Institutes of HealthWorkbasebiological heterogeneitycandidate markerclinical carecohortcommercializationcomorbiditycomputerized data processingcostdata acquisitiondepressed patientindividual patientmeetingsnovelpatient stratificationpatient subsetsprogramsprospectiverepetitive transcranial magnetic stimulationresponsesoftware developmentsupervised learningtherapy resistanttooltreatment optimizationtreatment responsetreatment-resistant depressionunsupervised learning
项目摘要
SUMMARY/ABSTRACT
The overarching aim of Alto Neuroscience is to advance brain-based biomarkers for psychiatric disorders in
order to both optimize treatment pathways and drive the development of novel pharmacological and non-
pharmacological interventions. Alto does this by developing and applying sophisticated machine learning
computational models to electroencephalography (EEG) data collected at scale in real-world clinical treatment
contexts. Specifically, in this direct-to-phase II SBIR proposal we will refine, and then independently validate,
two EEG-based candidate biomarkers we have identified for stratifying patients with depression in a manner that
both factors biological heterogeneity and informs treatment response. One of our biomarkers was derived in a
“top-down” (i.e. supervised) manner by trying to directly predict treatment outcome, while the other biomarker
presents a complimentary “bottom-up” (i.e. unsupervised) approach that begins by first identifying the most
biologically homogeneous subset of patients and then testing the treatment relevance of the subtyping. Together,
these findings represent very robust individual patient-level treatment-relevant EEG biomarkers, and in both
cases, help define a critically-important objective approach to prospectively identifying and treating treatment-
resistant depressed patients. A successful outcome of the proposed work would yield the first FDA-cleared
biomarkers for stratifying psychiatric conditions. It would also provide a basis for targeted development of
pharmacological and non-pharmacological interventions based on the EEG biomarkers. Both outcomes hold
substantial commercial value and exciting potential for transforming psychiatry.
摘要/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amit Etkin其他文献
Amit Etkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amit Etkin', 18)}}的其他基金
Validating of Machine Learning-Based EEG Treatment Biomarkers in Depression
验证基于机器学习的脑电图治疗抑郁症生物标志物
- 批准号:
10009501 - 财政年份:2020
- 资助金额:
$ 118.41万 - 项目类别:
Validating of Machine Learning-Based EEG Treatment Biomarkers in Depression
验证基于机器学习的脑电图治疗抑郁症生物标志物
- 批准号:
10366060 - 财政年份:2020
- 资助金额:
$ 118.41万 - 项目类别:
Assessing an electroencephalography (EEG) biomarker of response to transcranial magnetic stimulation for major depression
评估重度抑郁症对经颅磁刺激反应的脑电图 (EEG) 生物标志物
- 批准号:
9933192 - 财政年份:2020
- 资助金额:
$ 118.41万 - 项目类别:
A "Circuits-First" Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
10214488 - 财政年份:2019
- 资助金额:
$ 118.41万 - 项目类别:
A "Circuits-First" Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
10000142 - 财政年份:2019
- 资助金额:
$ 118.41万 - 项目类别:
A "Circuits-First" Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
10019435 - 财政年份:2019
- 资助金额:
$ 118.41万 - 项目类别:
A Circuit Approach to Mechanisms and Predictors of Topiramate Response
托吡酯反应机制和预测因子的电路方法
- 批准号:
10473684 - 财政年份:2018
- 资助金额:
$ 118.41万 - 项目类别:
A Circuit Approach to Mechanisms and Predictors of Topiramate Response
托吡酯反应机制和预测因子的电路方法
- 批准号:
10237286 - 财政年份:2018
- 资助金额:
$ 118.41万 - 项目类别:
A “Circuits-First” Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
9552929 - 财政年份:2017
- 资助金额:
$ 118.41万 - 项目类别:
A “Circuits-First” Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
9339858 - 财政年份:2017
- 资助金额:
$ 118.41万 - 项目类别:














{{item.name}}会员




