Developing new paradigms for mouse forelimb sensorimotor circuit analysis
开发小鼠前肢感觉运动电路分析的新范例
基本信息
- 批准号:10371764
- 负责人:
- 金额:$ 44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-29 至 2024-03-01
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAnimal ModelAreaBehaviorClinicalCodeCommunicationComplementComplexComputer softwareCoupledDevelopmentDimensionsDiseaseElectrodesEvaluationForelimbFrequenciesGeneticGoalsHandHealthHumanHuman ActivitiesImpairmentInvestigationJoystickKnowledgeLasersLightMainstreamingManualsMechanicsMechanoreceptorsMediatingMethodologyMethodsMissionModelingMolecularMonkeysMotivationMotorMovementMusMuscleNeocortexNervous system structureNeuronsNeurosciences ResearchOpsinOpticsOrganismOutcomePathologyPathway interactionsPatternPeripheralPhysicsPrimatesPropertyPsychophysicsPublic HealthResearchRoleScanningSensorimotor functionsSensorySeriesSignal TransductionSpeedSpinal CordStandardizationStimulusSystemTactileTechnologyTouch sensationUnited States National Institutes of HealthVariantVibrissaeViralVisual system structureWaterWorkawakebasebiceps brachii musclecell typedexteritydisabilityexperimental studyflexibilityimprovedin vivoinsightinterestkinematicsmotor controlmotor impairmentneural circuitneurophysiologynovel strategiesoptical fiberoptogeneticsprototyperelating to nervous systemresponsesomatosensoryspatiotemporalstroke modeltoolvisual motor
项目摘要
PROJECT SUMMARY
Sensory-guided movements of hands involve the integration and coordination of ascending somatosensory
signals and descending motor commands at multiple levels of the nervous system. A great deal of knowledge
about the neurophysiology of active touch and related aspects of forelimb somatosensation and motor control
has been gained from studies using humans and monkeys as subjects. More recently, studies using mice are
enabling extensive molecular and cellular characterizations of somatosensory neurons mediating forelimb-
related functions. However, a limitation to neurophysiological analysis of mouse forelimb functions is that the
vibrotactile and other mechanical types of stimuli that are commonly used to probe the system have inherent
practical limitations in their spatiotemporal precision, speed, flexibility, and complexity. These limitations reflect
the small dimensions of the mouse's forelimb anatomy and the need for mechanical stimuli to be applied
through direct physical contact. In contrast, in the visual system, the physics of light permits tightly controlled
delivery of complex stimuli. Our overall goal in this proposal is to develop new paradigms for investigating
forelimb somatosensory and motor functions in the mouse based on “light touch”: optogenetic activation of
mechanosensory afferents of the forelimbs/hands, using spatiotemporally controlled light stimuli. For this, we
will first use anesthetized mice to implement paradigms for optical delivery of light stimuli through optical fibers
or laser-scanning photostimulation (LSPS). The stimulation technology will be used to activate the
forelimbs/hands of mice expressing the excitatory opsin channelrhodopsin-2 (ChR2) in forelimb
mechanoreceptor afferents, and integrated with hardware and software for recording kinematics, neuronal
spiking in cortex and elsewhere, and forelimb muscular activity. In a second series of experiments we will
develop multiple variants of this approach for use with awake behaving mice, enabling diverse types of
experiments such as cortical silencing during peripheral activation, high-speed mapping of tactile responses,
dynamic stimulus patterns, and more. The overall outcome will be to augment and expand the available
experimental paradigms for investigating somatosensory-based functions of the mouse's forelimb,
complementing the growing availability in mice of genetic and viral methods for accessing and manipulating in
a cell-type-specific manner the somatosensory cell types and their circuits involved in sensory-guided motor
control of the forelimb.
项目摘要
手部的感觉引导运动涉及到上行躯体感觉的整合和协调
信号和下行运动指令在神经系统的多个层次。大量的知识
关于主动触摸的神经生理学以及前肢躯体感觉和运动控制的相关方面
是从以人类和猴子为研究对象的研究中获得的。最近,使用小鼠的研究
能够对介导前肢的体感神经元进行广泛的分子和细胞表征,
相关功能。然而,小鼠前肢功能的神经生理学分析的局限性在于,
通常用于探测系统的振动触觉和其它机械类型的刺激具有固有的
它们在时空精度、速度、灵活性和复杂性方面的实际限制。这些限制反映了
小鼠前肢解剖结构的小尺寸和施加机械刺激的需要
通过直接的身体接触。相比之下,在视觉系统中,光的物理特性允许严格控制
传递复杂的刺激。我们在这个提案中的总体目标是开发新的研究范式,
基于“轻触”的小鼠前肢躯体感觉和运动功能:光遗传学激活
前肢/手的机械感觉传入,使用时空控制的光刺激。为此我们
将首先使用麻醉的小鼠来实现通过光纤光学传递光刺激的范例
或激光扫描光刺激(LSPS)。刺激技术将用于激活
在前肢中表达兴奋性视蛋白通道视紫红质-2(ChR 2)的小鼠的前肢/手
机械感受器传入,并与硬件和软件集成,用于记录运动学,神经元
大脑皮层和其他地方的峰值以及前肢肌肉活动。在第二个实验中,我们将
开发这种方法的多种变体,用于清醒行为的小鼠,
实验,如周边激活过程中的皮层沉默,触觉反应的高速映射,
动态刺激模式等等。总体结果将是增加和扩大现有的
用于研究小鼠前肢的基于躯体感觉的功能的实验范例,
补充了在小鼠中越来越多的遗传和病毒方法的可用性,
感觉引导运动中涉及的躯体感觉细胞类型及其回路
控制前肢。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gordon M Shepherd其他文献
Gordon M Shepherd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gordon M Shepherd', 18)}}的其他基金
Towards a neurobiology of "oromanual" motor control: behavioral analysis and neural mechanisms
走向“手动”运动控制的神经生物学:行为分析和神经机制
- 批准号:
10819032 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Bidirectional circuits of locus ceruleus and motor cortex neurons
蓝斑和运动皮层神经元的双向回路
- 批准号:
10447235 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Towards elucidation of circuit mechanisms for feeding-related manual dexterity
阐明与喂养相关的手动灵巧性的电路机制
- 批准号:
9982480 - 财政年份:2020
- 资助金额:
$ 44万 - 项目类别:
Cellular Mechanisms Underlying Corticocollicular Modulation in the Auditory Syste
听觉系统中皮质小丘调节的细胞机制
- 批准号:
8803418 - 财政年份:2014
- 资助金额:
$ 44万 - 项目类别:
Cellular Mechanisms Underlying Corticocollicular Modulation in the Auditory Syste
听觉系统中皮质小丘调节的细胞机制
- 批准号:
8827754 - 财政年份:2014
- 资助金额:
$ 44万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists