An organ-on-a-chip model system to study prostate cancer metastasis into vascularized bone

研究前列腺癌转移至血管化骨的器官芯片模型系统

基本信息

项目摘要

PROJECT SUMMARY Based on “seed and soil” theory, certain tumors exhibit a predilection for metastasis to particular organs. For example, bone is the most common site of metastasis for prostate cancer, happening in ~90% of patients with advanced stages of prostate cancer. Organ-on-a-chip models of cancer metastasis have emerged as a powerful predictor of cancer progression. However, despite the development in organ-on-a-chip platforms for in-vitro studies in metastasis, research in bone metastasis on-a-chip remains largely underdeveloped, and the only few available models in the literature lack the complex mineralization and the inclusion of bone cells, especially osteoclasts into the system, which are essential elements in order to study bone remodeling. Here, (aim 1) we will use a novel organ-on-a-chip platform with a highly mineralized and calcified cell-laden hydrogel including osteoclasts to determine the influence of mineralization and the cross-talk of prostate cancer cells and bone cells on the process of preferential prostate cancer growth in bone and the consequent bone resorption. A potentially rate-limiting step in metastasis formation is the extravasation process that involves adhesion of tumor cells to endothelial cells and their transmigration through the endothelial cell monolayer and basement membrane. It has been well-established that pericyte-support of EC capillaries is required for formation of non-leaky vessels and perturbation of the EC-hMSC linkage, therefore results in leaky vessels. The role of pericytes in tumor metastasis has been mostly focused on tumor angiogenesis and the research on the role of this cell type on cancer extravasation has remained underdeveloped. Here, (aim 2) we will use the bone metastasis-on-a-chip platform to test the role of pericytes in a vasculature embedded in a mineralized bone matrix in inhibiting human prostate cancer extravasation as well as the effects of factors released by cancer cells on vasculature integrity. We argue that this multi-pronged strategy will enable the engineering of in-vitro bone metastasis-on-a-chip model system to understand the preferential metastasis of prostate cancer to the bone and bone destruction as well as the role of pericytes in prostate cancer extravasation through the vasculature. Ultimately, this project will lead to model systems that can be used for studying cancer metastasis to bone and developing new treatments.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luiz Eduardo Bertassoni其他文献

Self-assembly peptide Psub11/sub-4 induces mineralization and cell-migration of odontoblast-like cells
自组装肽 Psub11/sub-4 诱导成牙本质细胞样细胞矿化和细胞迁移
  • DOI:
    10.1016/j.jdent.2022.104111
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Isaac Jordão de Souza Araújo;Gustavo Narvaes Guimarães;Renato Assis Machado;Luiz Eduardo Bertassoni;Robert Philip Wynn Davies;Regina Maria Puppin-Rontani
  • 通讯作者:
    Regina Maria Puppin-Rontani

Luiz Eduardo Bertassoni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luiz Eduardo Bertassoni', 18)}}的其他基金

Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
  • 批准号:
    10614543
  • 财政年份:
    2021
  • 资助金额:
    $ 21.6万
  • 项目类别:
An organ-on-a-chip model system to study prostate cancer metastasis into vascularized bone
用于研究前列腺癌转移至血管化骨的器官芯片模型系统
  • 批准号:
    10545054
  • 财政年份:
    2021
  • 资助金额:
    $ 21.6万
  • 项目类别:
Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
  • 批准号:
    10449968
  • 财政年份:
    2021
  • 资助金额:
    $ 21.6万
  • 项目类别:
Microengineering the Dental Pulp Vascular Microenvironment
牙髓血管微环境的微工程
  • 批准号:
    9158576
  • 财政年份:
    2016
  • 资助金额:
    $ 21.6万
  • 项目类别:
Microengineering the Dental Pulp Vascular Microenvironment
牙髓血管微环境的微工程
  • 批准号:
    9981727
  • 财政年份:
    2016
  • 资助金额:
    $ 21.6万
  • 项目类别:

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
  • 批准号:
    BB/Y001427/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.6万
  • 项目类别:
    Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 21.6万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 21.6万
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    $ 21.6万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10841832
  • 财政年份:
    2023
  • 资助金额:
    $ 21.6万
  • 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
  • 批准号:
    10532480
  • 财政年份:
    2022
  • 资助金额:
    $ 21.6万
  • 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
  • 批准号:
    10741261
  • 财政年份:
    2022
  • 资助金额:
    $ 21.6万
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    $ 21.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了