Microengineering the Dental Pulp Vascular Microenvironment
牙髓血管微环境的微工程
基本信息
- 批准号:9158576
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAngiogenic FactorArchitectureBiocompatibleBiocompatible MaterialsBiologicalBlood VesselsBlood capillariesCell Differentiation processCellsCoculture TechniquesCommunicable DiseasesCuesDental MaterialsDental PulpDental cariesDentinDentistryDevelopmentEndodonticsEndothelial CellsEngineeringEnvironmentEvaluationExcisionExtracellular MatrixGelatinGoalsHeartHumanHydrogelsImplantIn VitroIndividualInjectableLearningLengthLightMechanicsMediatingMethacrylatesMicrofluidicsMusNatural regenerationNecrosisNutrientOdontoblastsPepsin APhenotypePlant RootsProcessPropertyPulp CanalsRoleRoot Canal TherapySideSignaling MoleculeSiteSkinSourceStagingStem cellsSwellingTechniquesTestingTissue EngineeringTissue ModelTissue SurvivalTissuesTooth ApexTooth structureVascular blood supplyVascularizationWaste Productsbasebioprintingblood vessel developmentcapillarycell motilitycellular engineeringcrosslinkdental structureimprovedin vivomonolayernovelparacrinepermanent toothphysical propertyregenerativeresponsescaffoldsuccesstissue regenerationtranslational approachvasculogenesis
项目摘要
Project Summary:
Dental caries is an infectious disease affecting approximately 90% of adults worldwide. Late stages of caries
affect the dental pulp, leading to tissue necrosis and ultimately requiring root canal therapy. Typically, root
canals in permanent teeth are treated by removing the necrotic tissue and replacing it with an artificial material.
Regenerative endodontics has been proposed as an improved treatment option for these conditions. However,
without controllable strategies to engineer the pulp vasculature, effective pulp regeneration is virtually
impossible. It has been recently demonstrated that a functional vasculature can be engineered by culturing
endothelial cells and stem cells from various sources in the correct microenvironmental conditions. However,
the precise requirements specific to regenerating the pulp vasculature remain poorly understood. This project
will systematically investigate three overlapping aspects that we propose are key determinants to regenerate
the pulp vasculature: (1) matrix physical and mechanical properties, (2) composition, and (3) microarchitecture.
In aim 1 we will investigate the contributions of different physical and mechanical properties to the ability of
human endothelial colony forming cells (ECFCs) and dental pulp stem cells (DPSCs) to form microvascular
networks when embedded in hydrogels that can be photo-crosslinked to have their properties systematically
adjusted. We will then engineer pulp tissue-constructs that are pre-vascularized with pre-fabricated endothelial
microchannels to enhance pulp regeneration in full-length root canals in-vivo. In aim 2 we will develop
injectable and photo-curable hydrogels synthesized from the natural matrix of dentin and modified with
methacrylates to test the contribution of matrix composition to the regeneration of the pulp vasculature.
Further, we will combine these hydrogels with angiogenic components extracted from the dentin matrix and
test their regenerative potential in vitro and in vivo. In aim 3 we will fabricate architecturally controlled gradients
of ECFC and DPSC paracrine factors using microfluidics techniques to test the contribution of tissue
microarchitecture to the formation of the pulp vasculature. We will then mimic the microarchitectures of
vascularized dental pulp by 3D bioprinting tissue constructs that reproduce the organization of the native pulp.
In the end of this project we expect to have microengineered a 3D vascularized pulp microenvironment that will
improve translational approaches for use in regenerative endodontics in adult teeth.
项目概要:
龋齿是一种感染性疾病,影响全球约90%的成年人。晚期龋齿
影响牙髓,导致组织坏死,最终需要根管治疗。通常,根
恒牙的根管是通过去除坏死组织并用人造材料代替来治疗的。
再生牙髓学已被提出作为这些条件的一种改进的治疗选择。然而,在这方面,
如果没有可控的策略来设计牙髓脉管系统,
不可能的最近已经证明,功能性脉管系统可以通过培养来工程化。
内皮细胞和干细胞从各种来源在正确的微环境条件。然而,在这方面,
对于再生牙髓脉管系统的具体要求仍然知之甚少。这个项目
我将系统地研究我们认为是再生的关键决定因素的三个重叠方面
牙髓脉管系统:(1)基质物理和机械性质,(2)组成,和(3)微结构。
在目标1中,我们将研究不同的物理和机械性能对聚合物聚合能力的贡献。
人内皮集落形成细胞(ECFC)和牙髓干细胞(DPSC)以形成微血管
当嵌入水凝胶中时,网络可以光交联以系统地具有其特性
调整然后,我们将设计牙髓组织结构,用预制的内皮细胞预血管化,
微通道,以增强牙髓再生全长根管体内。在目标2中,我们将开发
由天然牙本质基质合成的可注射和光固化水凝胶,
使用甲基丙烯酸酯来测试基质组合物对牙髓脉管系统再生的贡献。
此外,我们将联合收割机这些水凝胶与从牙本质基质中提取的血管生成成分结合,
在体外和体内测试它们的再生潜力。在目标3中,我们将制造建筑控制梯度
ECFC和DPSC旁分泌因子使用微流体技术测试组织的贡献
微结构对牙髓脉管系统形成的影响。然后,我们将模仿
通过3D生物打印组织构建体来复制天然牙髓的组织,从而实现血管化牙髓。
在这个项目的最后,我们希望有一个3D血管化牙髓微环境,
用于成人牙齿再生牙髓学改进的平移方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luiz Eduardo Bertassoni其他文献
Self-assembly peptide Psub11/sub-4 induces mineralization and cell-migration of odontoblast-like cells
自组装肽 Psub11/sub-4 诱导成牙本质细胞样细胞矿化和细胞迁移
- DOI:
10.1016/j.jdent.2022.104111 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:5.500
- 作者:
Isaac Jordão de Souza Araújo;Gustavo Narvaes Guimarães;Renato Assis Machado;Luiz Eduardo Bertassoni;Robert Philip Wynn Davies;Regina Maria Puppin-Rontani - 通讯作者:
Regina Maria Puppin-Rontani
Luiz Eduardo Bertassoni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luiz Eduardo Bertassoni', 18)}}的其他基金
Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
- 批准号:
10614543 - 财政年份:2021
- 资助金额:
$ 38.5万 - 项目类别:
An organ-on-a-chip model system to study prostate cancer metastasis into vascularized bone
用于研究前列腺癌转移至血管化骨的器官芯片模型系统
- 批准号:
10545054 - 财政年份:2021
- 资助金额:
$ 38.5万 - 项目类别:
An organ-on-a-chip model system to study prostate cancer metastasis into vascularized bone
研究前列腺癌转移至血管化骨的器官芯片模型系统
- 批准号:
10373347 - 财政年份:2021
- 资助金额:
$ 38.5万 - 项目类别:
Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
- 批准号:
10449968 - 财政年份:2021
- 资助金额:
$ 38.5万 - 项目类别:
Microengineering the Dental Pulp Vascular Microenvironment
牙髓血管微环境的微工程
- 批准号:
9981727 - 财政年份:2016
- 资助金额:
$ 38.5万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 38.5万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)