Microengineering the Dental Pulp Vascular Microenvironment
牙髓血管微环境的微工程
基本信息
- 批准号:9981727
- 负责人:
- 金额:$ 50.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdultAffectAngiogenic FactorArchitectureBiocompatible MaterialsBiologicalBlood VesselsBlood capillariesCell Differentiation processCellsCoculture TechniquesCommunicable DiseasesCuesDental MaterialsDental PulpDental cariesDentinDentistryDevelopmentDiffuseEndodonticsEndothelial CellsEndotheliumEngineeringEnvironmentEvaluationExcisionExtracellular MatrixGelatinGoalsHeartHumanHydrogelsImplantIn VitroIndividualInjectableLengthLightMediatingMethacrylatesMicrofluidicsMusNatural regenerationNecrosisNutrientOdontoblastsPepsin APhenotypePlant RootsPolymersProcessPropertyPulp CanalsRoleRoot Canal TherapySideSignaling MoleculeSiteSkinSourceSwellingTechniquesTestingTissue EngineeringTissue ModelTissue SurvivalTissuesTooth ApexTooth structureVascular blood supplyVascularizationWaste Productsbasebiomaterial compatibilitybioprintingblood vessel developmentcell motilitycrosslinkdental structureimprovedin vivomechanical propertiesmonolayernovelparacrinepermanent toothphysical propertyregenerativeresponsescaffoldstem cellssuccesstissue regenerationtranslational approachvasculogenesisvirtual
项目摘要
Project Summary:
Dental caries is an infectious disease affecting approximately 90% of adults worldwide. Late stages of caries
affect the dental pulp, leading to tissue necrosis and ultimately requiring root canal therapy. Typically, root
canals in permanent teeth are treated by removing the necrotic tissue and replacing it with an artificial material.
Regenerative endodontics has been proposed as an improved treatment option for these conditions. However,
without controllable strategies to engineer the pulp vasculature, effective pulp regeneration is virtually
impossible. It has been recently demonstrated that a functional vasculature can be engineered by culturing
endothelial cells and stem cells from various sources in the correct microenvironmental conditions. However,
the precise requirements specific to regenerating the pulp vasculature remain poorly understood. This project
will systematically investigate three overlapping aspects that we propose are key determinants to regenerate
the pulp vasculature: (1) matrix physical and mechanical properties, (2) composition, and (3) microarchitecture.
In aim 1 we will investigate the contributions of different physical and mechanical properties to the ability of
human endothelial colony forming cells (ECFCs) and dental pulp stem cells (DPSCs) to form microvascular
networks when embedded in hydrogels that can be photo-crosslinked to have their properties systematically
adjusted. We will then engineer pulp tissue-constructs that are pre-vascularized with pre-fabricated endothelial
microchannels to enhance pulp regeneration in full-length root canals in-vivo. In aim 2 we will develop
injectable and photo-curable hydrogels synthesized from the natural matrix of dentin and modified with
methacrylates to test the contribution of matrix composition to the regeneration of the pulp vasculature.
Further, we will combine these hydrogels with angiogenic components extracted from the dentin matrix and
test their regenerative potential in vitro and in vivo. In aim 3 we will fabricate architecturally controlled gradients
of ECFC and DPSC paracrine factors using microfluidics techniques to test the contribution of tissue
microarchitecture to the formation of the pulp vasculature. We will then mimic the microarchitectures of
vascularized dental pulp by 3D bioprinting tissue constructs that reproduce the organization of the native pulp.
In the end of this project we expect to have microengineered a 3D vascularized pulp microenvironment that will
improve translational approaches for use in regenerative endodontics in adult teeth.
项目总结:
龋齿是一种感染性疾病,全世界约90%的成年人受到影响。龋齿晚期
影响牙髓,导致组织坏死,最终需要进行根管治疗。通常,根用户
恒牙的根管是通过移除坏死组织并用人造材料取代它来治疗的。
再生性牙髓治疗已被提议作为这些疾病的一种改进的治疗选择。然而,
如果没有可控的策略来设计牙髓血管系统,有效的牙髓再生几乎是
不可能。最近已经证明,通过培养可以设计出具有功能的血管系统。
来自各种来源的内皮细胞和干细胞在正确的微环境条件下。然而,
再生牙髓血管系统的确切要求仍然知之甚少。这个项目
我将系统地研究三个重叠的方面,我们认为这三个方面是再生的关键决定因素
牙髓血管系统:(1)基质物理和机械特性,(2)组成,和(3)微结构。
在目标1中,我们将调查不同的物理和机械性能对以下能力的贡献
人内皮细胞集落形成细胞和牙髓干细胞形成微血管
当网络嵌入到水凝胶中时,可以通过光交联使其具有系统的性质
调整过了。然后,我们将设计牙髓组织--用预制的内皮细胞预血运的牙髓组织
促进全长根管内牙髓再生的微通道。在目标2中,我们将开发
由牙本质天然基质合成的可注射和光固化的水凝胶
测试基质成分对牙髓血管再生的贡献。
此外,我们将把这些水凝胶与从牙本质基质中提取的血管生成成分结合起来,并
在体外和体内测试它们的再生能力。在目标3中,我们将制作建筑控制的渐变
用微流控技术检测ECFC和DPSC旁分泌因子对组织的贡献
微结构对牙髓血管系统的形成。然后我们将模拟的微体系结构
通过3D生物打印组织构建的血管化牙髓,复制了天然牙髓的组织。
在这个项目的最后,我们希望已经完成了一个3D血管化的牙髓微环境的微工程,它将
改进用于成人牙齿再生牙髓治疗的翻译方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luiz Eduardo Bertassoni其他文献
Self-assembly peptide Psub11/sub-4 induces mineralization and cell-migration of odontoblast-like cells
自组装肽 Psub11/sub-4 诱导成牙本质细胞样细胞矿化和细胞迁移
- DOI:
10.1016/j.jdent.2022.104111 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:5.500
- 作者:
Isaac Jordão de Souza Araújo;Gustavo Narvaes Guimarães;Renato Assis Machado;Luiz Eduardo Bertassoni;Robert Philip Wynn Davies;Regina Maria Puppin-Rontani - 通讯作者:
Regina Maria Puppin-Rontani
Luiz Eduardo Bertassoni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luiz Eduardo Bertassoni', 18)}}的其他基金
Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
- 批准号:
10614543 - 财政年份:2021
- 资助金额:
$ 50.31万 - 项目类别:
An organ-on-a-chip model system to study prostate cancer metastasis into vascularized bone
用于研究前列腺癌转移至血管化骨的器官芯片模型系统
- 批准号:
10545054 - 财政年份:2021
- 资助金额:
$ 50.31万 - 项目类别:
An organ-on-a-chip model system to study prostate cancer metastasis into vascularized bone
研究前列腺癌转移至血管化骨的器官芯片模型系统
- 批准号:
10373347 - 财政年份:2021
- 资助金额:
$ 50.31万 - 项目类别:
Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
- 批准号:
10449968 - 财政年份:2021
- 资助金额:
$ 50.31万 - 项目类别:
Microengineering the Dental Pulp Vascular Microenvironment
牙髓血管微环境的微工程
- 批准号:
9158576 - 财政年份:2016
- 资助金额:
$ 50.31万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 50.31万 - 项目类别:
Research Grant














{{item.name}}会员




