Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
基本信息
- 批准号:10614543
- 负责人:
- 金额:$ 61.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAutologousAutologous TransplantationBiocompatible MaterialsBiologicalBiological ModelsBiomanufacturingBiomimeticsBlood VesselsBlood capillariesBlood flowBone MatrixBone RegenerationBone SubstitutesBone TissueBone TransplantationBone structureCalvariaCellsCementationCharacteristicsClinicClinicalCommunicationDefectDevelopmentEngineeringExcisionFailureFutureGelHarvestHospital CostsHydrogelsImpairmentImplantIn VitroInjectableMalignant NeoplasmsMesenchymal Stem CellsMethodsMicrofluidic MicrochipsMicrofluidicsMineralsMorbidity - disease rateNanostructuresNatural regenerationNerve FibersNervous SystemNeuronsOperative Surgical ProceduresOralOsteogenesisOutcomeParacrine CommunicationPericytesPhenotypePhysiologic calcificationPlayProceduresProcessPropertyRegenerative capacitySeriesSiteStructureSystemTestingTimeTissue DonorsTissue EngineeringTissue constructsTissuesTraumaVascular blood supplyVascularizationWorkbiomineralizationbonebone engineeringbone marrow mesenchymal stem cellbone repairbone scaffoldcalcificationclinical applicationcostdesignendothelial stem cellextracellularhuman stem cellsimplantationimprovedin vitro regenerationin vivoin vivo regenerationinnovationlong bonemanufacturemanufacturing processmineralizationnanonanoengineeringnanoscalenerve stem cellnerve supplynovelosteogenicosteoprogenitor cellphysical propertyregeneration potentialregenerativeregenerative approachresponsescaffoldscale upskeletalstem cell differentiationstem cellssuccesstoolvirtual
项目摘要
PROJECT SUMMARY
A wide range of skeletal conditions require assisted bone repair, including trauma, cancer resections, and bone
augmentation for oral implant therapy. Current methods to treat these conditions rely on procedures to harvest
and implant bone autografts, which are costly, invasive and difficult to scale up. The other alternatives are
synthetic bone replacement materials, which show high failure rates and fail to mimic the native bone structure,
composition and osteogenic properties. Stem cell-based tissue engineering has long been proposed as a
promising alternative for the repair of bone defects. However, treating large bony structures remains problematic.
It is generally believed that scaffold materials that closely approximate the characteristics of native bone
represent improved materials for bone regeneration. However, the development of in-vitro scaffolds mimicking
the highly vascularized, innervated, and mineralized cell-rich bone matrix down to the nanoscale has remained
elusive to date. Here, we will develop a new bone scaffold biomanufacturing process where osteoprogenitor cells
are three-dimensionally embedded in controlled nano-mineralized, pre-vascularized and innervated bone-like
injectable microgels, thus mimicking the mineralized nanostructure, cellular and extracellular microenvironment
of native bone. (aim 1) We will determine the mechanistic characteristics enabling the differentiation of hMSCs
into osteogenic phenotypes as influenced by bone-like microenvironments, and engineer cell-laden mineralized
injectable microgels that approximate the regenerative potential of autologous bone grafts. We will then adapt
this strategy to engineer (aim 2) pericyte-supported vascular capillaries and (aim 3) neuronal networks, that are
embedded in nanoscale mineralized hydrogels, to determine the mechanisms that enable vasculature and
innervation enhancement of osteogenesis in-vitro and regeneration in-vivo. We argue that this multi-pronged
strategy will enable the engineering of highly innovative bone scaffold materials and in-vitro bone model systems
that will share great nanostructural and physical similarities to native bone. Ultimately, this will lead to
biomaterials that closely approximate the regenerative potential of autologous bone in the clinic.
项目总结
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Matrix stiffness regulates lipid nanoparticle-mRNA delivery in cell-laden hydrogels.
基质刚度调节脂质纳米粒子-mRNA在充满细胞的水凝胶中的传递。
- DOI:10.1016/j.nano.2022.102550
- 发表时间:2022-06
- 期刊:
- 影响因子:5.4
- 作者:Athirasala, Avathamsa;Patel, Siddharth;Menezes, Paula P.;Kim, Jeonghwan;Tahayeri, Anthony;Sahay, Gaurav;Bertassoni, Luiz E.
- 通讯作者:Bertassoni, Luiz E.
Engineering of an Osteoinductive and Growth Factor-Free Injectable Bone-Like Microgel for Bone Regeneration.
用于骨再生的骨诱导和无生长因子可注射骨样微凝胶的工程。
- DOI:10.1002/adhm.202200976
- 发表时间:2023
- 期刊:
- 影响因子:10
- 作者:Subbiah,Ramesh;Lin,EdithY;Athirasala,Avathamsa;Romanowicz,GenevieveE;Lin,AngelaSP;Califano,JosephV;Guldberg,RobertE;Bertassoni,LuizE
- 通讯作者:Bertassoni,LuizE
Correction to: 3D-printed microgels supplemented with dentin matrix molecules as a novel biomaterial for direct pulp capping.
更正:添加牙本质基质分子的 3D 打印微凝胶作为直接盖髓的新型生物材料。
- DOI:10.1007/s00784-022-04772-8
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Cunha,Diana;Souza,Nayara;Moreira,Manuela;Rodrigues,Nara;Silva,Paulo;Franca,Cristiane;Horsophonphong,Sivaporn;Sercia,Ashley;Subbiah,Ramesh;Tahayeri,Anthony;Ferracane,Jack;Yelick,Pamela;Saboia,Vicente;Bertassoni,Luiz
- 通讯作者:Bertassoni,Luiz
Opportunities and challenges to engineer 3D models of tumor-adaptive immune interactions.
- DOI:10.3389/fimmu.2023.1162905
- 发表时间:2023
- 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
In vitro development and optimization of cell-laden injectable bioprinted gelatin methacryloyl (GelMA) microgels mineralized on the nanoscale.
- DOI:10.1016/j.bioadv.2024.213805
- 发表时间:2024-03
- 期刊:
- 影响因子:0
- 作者:Mauricio Goncalves da Costa Sousa;G. de Souza Balbinot;Ramesh Subbiah;Rahul M. Visalakshan;A. Tahayeri
- 通讯作者:Mauricio Goncalves da Costa Sousa;G. de Souza Balbinot;Ramesh Subbiah;Rahul M. Visalakshan;A. Tahayeri
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luiz Eduardo Bertassoni其他文献
Self-assembly peptide Psub11/sub-4 induces mineralization and cell-migration of odontoblast-like cells
自组装肽 Psub11/sub-4 诱导成牙本质细胞样细胞矿化和细胞迁移
- DOI:
10.1016/j.jdent.2022.104111 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:5.500
- 作者:
Isaac Jordão de Souza Araújo;Gustavo Narvaes Guimarães;Renato Assis Machado;Luiz Eduardo Bertassoni;Robert Philip Wynn Davies;Regina Maria Puppin-Rontani - 通讯作者:
Regina Maria Puppin-Rontani
Luiz Eduardo Bertassoni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luiz Eduardo Bertassoni', 18)}}的其他基金
An organ-on-a-chip model system to study prostate cancer metastasis into vascularized bone
用于研究前列腺癌转移至血管化骨的器官芯片模型系统
- 批准号:
10545054 - 财政年份:2021
- 资助金额:
$ 61.24万 - 项目类别:
An organ-on-a-chip model system to study prostate cancer metastasis into vascularized bone
研究前列腺癌转移至血管化骨的器官芯片模型系统
- 批准号:
10373347 - 财政年份:2021
- 资助金额:
$ 61.24万 - 项目类别:
Microengineering vascularized and innervated bone-like scaffolds as an alternative to autologous bone grafts
微工程血管化和神经支配的骨样支架作为自体骨移植的替代品
- 批准号:
10449968 - 财政年份:2021
- 资助金额:
$ 61.24万 - 项目类别:
Microengineering the Dental Pulp Vascular Microenvironment
牙髓血管微环境的微工程
- 批准号:
9158576 - 财政年份:2016
- 资助金额:
$ 61.24万 - 项目类别:
Microengineering the Dental Pulp Vascular Microenvironment
牙髓血管微环境的微工程
- 批准号:
9981727 - 财政年份:2016
- 资助金额:
$ 61.24万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 61.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 61.24万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 61.24万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 61.24万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 61.24万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 61.24万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 61.24万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 61.24万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 61.24万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 61.24万 - 项目类别:
Standard Grant