Negative Regulation of Osteoclastogenesis
破骨细胞生成的负调控
基本信息
- 批准号:10372951
- 负责人:
- 金额:$ 41.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-08 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:Biological AssayBone ResorptionBone remodelingCell LineageCellsCoupledCouplingDevelopmentDiseaseEnhancersEnvironmentEnzymesEpigenetic ProcessGene Expression ProfileGenerationsGenesGoalsHistonesHumanHypoxiaImplantInfectionInflammationInflammatoryInterferonsInterleukin-1KnowledgeLinkMAP Kinase GeneMediatingMedicalMetabolicMetabolic PathwayMetabolismModelingMolecularMusculoskeletalMyelogenousOrthopedicsOsteoblastsOsteoclastsOsteogenesisOsteolysisPathologicPathway interactionsPatientsPeriodontitisPhasePhysiologicalRegulationResistanceRheumatoid ArthritisSignal InductionSignal TransductionSiteSynovial MembraneTNF geneTNFSF11 geneTherapeuticTranscription Factor AP-1Workbasebonebone erosionbone lossbone masschromatin modificationchromatin remodelingcofactorcytokineepigenomeepigenomicsgenetic variantin vivo Modelinflammatory bone lossnovel strategiesnovel therapeutic interventionosteoclastogenesispathologic bone resorptionpromotertherapeutic targettranscription factor
项目摘要
Myeloid lineage osteoclasts are the sole effective bone-resorbing cells. Many pathological conditions
associated with excessive bone resorption and bone loss are characterized by excessive
osteoclastogenesis. The long term goals of this project are to elucidate new molecular pathways and
mechanisms that suppress osteoclastogenesis, with the associated goal of using this information to develop
new therapeutic approaches to suppress pathological bone resorption.
Inflammation is an important driver of pathological bone loss. Inflammation decreases bone mass by
suppressing osteoblast-mediated bone formation, and concomitantly strongly promoting bone resorption by
increasing the differentiation and bone-resorbing function of osteoclasts. Thus, inflammation induces local
bone erosion/osteolysis at inflammatory sites in diseases such as rheumatoid arthritis (RA), periodontitis,
infections, and orthopedic peri-implant loosening. Inflammatory sites are also characterized by hypoxia,
which potentiates RANKL-induced osteoclastogenesis by mostly unknown mechanisms. Pathological bone
loss in an inflammatory/hypoxic environment such as RA synovium is resistant to standard anti-resorptive
therapies, and development of new treatments represents an important unmet medical need.
Based on our overarching hypothesis that augmenting inhibitory mechanisms represents an
attractive alternative therapeutic approach to suppress pathologic bone resorption, in the previous project
period we investigated mechanisms that suppress metabolic and epigenetic pathways important for
osteoclastogenesis and are relevant for inflammatory bone loss. We found that IFN-, well established to
restrain bone loss at inflammatory sites, remodeled the epigenome of human osteoclast precursors,
resulting in remodeling of chromatin and histone marks at enhancers and promoters of key osteoclast
genes. We discovered a new cell-intrinsic negative regulator of osteoclasts, COMMD1, which works by
suppressing NF-B signaling and the induction of anabolic metabolic pathways important for
osteoclastogenesis. Allelic variants that increase COMMD1 expression are associated with decreased bone
loss in RA patients, and myeloid deletion of Commd1 resulted in increased bone loss in inflammatory
models. COMMD1 is inactivated by hypoxia, suggesting that abrogation of this inhibitory mechanism at
hypoxic sites such as RA synovium contributes to pathological bone loss. The extrinsic and intrinsic
negative regulators, IFN- and COMMD1 respectively, converged to suppress the expression and function
of transcription factors important for induction of osteoclast metabolic genes and pathways. These results
identify new inhibitory mechanisms, which we will characterize to obtain knowledge that can be used to
develop new approaches to suppress osteoclastogenesis and pathologic bone resorption by augmenting
these inhibitory mechanisms therapeutically.
髓系破骨细胞是唯一有效的骨吸收细胞。许多病理状况
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The relative timing of exposure to phagocytosable particulates and to osteoclastogenic cytokines is critically important in the determination of myeloid cell fate.
- DOI:10.4049/jimmunol.0902808
- 发表时间:2010-07-15
- 期刊:
- 影响因子:0
- 作者:James DE;Nestor BJ;Sculco TP;Ivashkiv LB;Ross FP;Goldring SR;Purdue PE
- 通讯作者:Purdue PE
Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-gamma in human osteoclast precursors.
- DOI:10.4049/jimmunol.0900072
- 发表时间:2009-12-01
- 期刊:
- 影响因子:0
- 作者:Ji JD;Park-Min KH;Shen Z;Fajardo RJ;Goldring SR;McHugh KP;Ivashkiv LB
- 通讯作者:Ivashkiv LB
Role of Lysine-Specific Demethylase 1 in Metabolically Integrating Osteoclast Differentiation and Inflammatory Bone Resorption Through Hypoxia-Inducible Factor 1α and E2F1.
- DOI:10.1002/art.42074
- 发表时间:2022-06
- 期刊:
- 影响因子:13.3
- 作者:Doi, Kohei;Murata, Koichi;Ito, Shuji;Suzuki, Akari;Terao, Chikashi;Ishie, Shinichiro;Umemoto, Akio;Murotani, Yoshiki;Nishitani, Kohei;Yoshitomi, Hiroyuki;Fujii, Takayuki;Watanabe, Ryu;Hashimoto, Motomu;Murakami, Kosaku;Tanaka, Masao;Ito, Hiromu;Park-Min, Kyung-Hyun;Ivashkiv, Lionel B.;Morinobu, Akio;Matsuda, Shuichi
- 通讯作者:Matsuda, Shuichi
Interleukin-27 inhibits human osteoclastogenesis by abrogating RANKL-mediated induction of nuclear factor of activated T cells c1 and suppressing proximal RANK signaling.
- DOI:10.1002/art.27200
- 发表时间:2010-02
- 期刊:
- 影响因子:0
- 作者:Kalliolias, George D.;Zhao, Baohong;Triantafyllopoulou, Antigoni;Park-Min, Kyung-Hyun;Ivashkiv, Lionel B.
- 通讯作者:Ivashkiv, Lionel B.
IL-10 suppresses calcium-mediated costimulation of receptor activator NF-kappa B signaling during human osteoclast differentiation by inhibiting TREM-2 expression.
- DOI:10.4049/jimmunol.0804165
- 发表时间:2009-08-15
- 期刊:
- 影响因子:0
- 作者:Park-Min KH;Ji JD;Antoniv T;Reid AC;Silver RB;Humphrey MB;Nakamura M;Ivashkiv LB
- 通讯作者:Ivashkiv LB
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lionel B Ivashkiv其他文献
Lionel B Ivashkiv的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lionel B Ivashkiv', 18)}}的其他基金
相似海外基金
Elucidation of bone resorption mechanism around implants caused by microgap dissection and establishment of suppression method
微间隙剥离引起种植体周围骨吸收机制的阐明及抑制方法的建立
- 批准号:
22K10080 - 财政年份:2022
- 资助金额:
$ 41.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAN OSTEOCLAST BIOMARKERS DETECT EXCESSIVE SUBCHONDRAL BONE RESORPTION IN RACEHORSES?
破骨细胞生物标志物可以检测赛马过度的软骨下骨吸收吗?
- 批准号:
RGPIN-2019-04966 - 财政年份:2022
- 资助金额:
$ 41.38万 - 项目类别:
Discovery Grants Program - Individual
Mechanisms of bone resorption in the cancer microenvironment.
癌症微环境中的骨吸收机制。
- 批准号:
22K10145 - 财政年份:2022
- 资助金额:
$ 41.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Secretory mechanism of GMSC derved exosomes and suppression of bone resorption by internalizing miRNA
GMSC 衍生的外泌体的分泌机制和通过内化 miRNA 抑制骨吸收
- 批准号:
21K21017 - 财政年份:2021
- 资助金额:
$ 41.38万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
CAN OSTEOCLAST BIOMARKERS DETECT EXCESSIVE SUBCHONDRAL BONE RESORPTION IN RACEHORSES?
破骨细胞生物标志物可以检测赛马过度的软骨下骨吸收吗?
- 批准号:
RGPIN-2019-04966 - 财政年份:2021
- 资助金额:
$ 41.38万 - 项目类别:
Discovery Grants Program - Individual
A new model for spatio-temporal coupling of bone formation and bone resorption governed by osteoclasts
破骨细胞控制的骨形成和骨吸收时空耦合的新模型
- 批准号:
10905262 - 财政年份:2020
- 资助金额:
$ 41.38万 - 项目类别:
The Myokine Irisin Modulates Bone Resorption via Stimulation of Osteoclastogenesis
肌动素鸢尾素通过刺激破骨细胞生成调节骨吸收
- 批准号:
10228556 - 财政年份:2020
- 资助金额:
$ 41.38万 - 项目类别:
CAN OSTEOCLAST BIOMARKERS DETECT EXCESSIVE SUBCHONDRAL BONE RESORPTION IN RACEHORSES?
破骨细胞生物标志物可以检测赛马过度的软骨下骨吸收吗?
- 批准号:
RGPIN-2019-04966 - 财政年份:2020
- 资助金额:
$ 41.38万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




