Negative Regulation of Osteoclastogenesis
破骨细胞生成的负调控
基本信息
- 批准号:10112883
- 负责人:
- 金额:$ 41.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-08 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:Biological AssayBone ResorptionBone remodelingCell LineageCellsCoupledCouplingDevelopmentDiseaseEnhancersEnvironmentEnzymesEpigenetic ProcessGene Expression ProfileGenerationsGenesGoalsHistonesHumanHypoxiaImplantInfectionInflammationInflammatoryInterferonsInterleukin-1KnowledgeLinkMAP Kinase GeneMediatingMedicalMetabolicMetabolic PathwayMetabolismModelingMolecularMusculoskeletalMyelogenousOrthopedicsOsteoblastsOsteoclastsOsteogenesisOsteolysisPathologicPathway interactionsPatientsPeriodontitisPhasePhysiologicalRegulationResistanceRheumatoid ArthritisSignal InductionSignal TransductionSiteSynovial MembraneTNF geneTNFSF11 geneTherapeuticTranscription Factor AP-1Workbasebonebone erosionbone lossbone masschromatin modificationchromatin remodelingcofactorcytokineepigenomeepigenomicsgenetic variantin vivo Modelinflammatory bone lossnovel strategiesnovel therapeutic interventionosteoclastogenesispathologic bone resorptionpromotertherapeutic targettranscription factor
项目摘要
Myeloid lineage osteoclasts are the sole effective bone-resorbing cells. Many pathological conditions
associated with excessive bone resorption and bone loss are characterized by excessive
osteoclastogenesis. The long term goals of this project are to elucidate new molecular pathways and
mechanisms that suppress osteoclastogenesis, with the associated goal of using this information to develop
new therapeutic approaches to suppress pathological bone resorption.
Inflammation is an important driver of pathological bone loss. Inflammation decreases bone mass by
suppressing osteoblast-mediated bone formation, and concomitantly strongly promoting bone resorption by
increasing the differentiation and bone-resorbing function of osteoclasts. Thus, inflammation induces local
bone erosion/osteolysis at inflammatory sites in diseases such as rheumatoid arthritis (RA), periodontitis,
infections, and orthopedic peri-implant loosening. Inflammatory sites are also characterized by hypoxia,
which potentiates RANKL-induced osteoclastogenesis by mostly unknown mechanisms. Pathological bone
loss in an inflammatory/hypoxic environment such as RA synovium is resistant to standard anti-resorptive
therapies, and development of new treatments represents an important unmet medical need.
Based on our overarching hypothesis that augmenting inhibitory mechanisms represents an
attractive alternative therapeutic approach to suppress pathologic bone resorption, in the previous project
period we investigated mechanisms that suppress metabolic and epigenetic pathways important for
osteoclastogenesis and are relevant for inflammatory bone loss. We found that IFN-, well established to
restrain bone loss at inflammatory sites, remodeled the epigenome of human osteoclast precursors,
resulting in remodeling of chromatin and histone marks at enhancers and promoters of key osteoclast
genes. We discovered a new cell-intrinsic negative regulator of osteoclasts, COMMD1, which works by
suppressing NF-B signaling and the induction of anabolic metabolic pathways important for
osteoclastogenesis. Allelic variants that increase COMMD1 expression are associated with decreased bone
loss in RA patients, and myeloid deletion of Commd1 resulted in increased bone loss in inflammatory
models. COMMD1 is inactivated by hypoxia, suggesting that abrogation of this inhibitory mechanism at
hypoxic sites such as RA synovium contributes to pathological bone loss. The extrinsic and intrinsic
negative regulators, IFN- and COMMD1 respectively, converged to suppress the expression and function
of transcription factors important for induction of osteoclast metabolic genes and pathways. These results
identify new inhibitory mechanisms, which we will characterize to obtain knowledge that can be used to
develop new approaches to suppress osteoclastogenesis and pathologic bone resorption by augmenting
these inhibitory mechanisms therapeutically.
髓系破骨细胞是唯一有效的骨吸收细胞。许多病理条件
与过度的骨吸收和骨丢失相关的特征是过度的骨吸收和骨丢失。
破骨细胞生成该项目的长期目标是阐明新的分子途径,
抑制破骨细胞生成的机制,相关的目标是利用这些信息来开发
抑制病理性骨吸收的新治疗方法。
炎症是病理性骨丢失的重要驱动因素。炎症通过以下方式降低骨量:
抑制成骨细胞介导的骨形成,并伴随强烈促进骨吸收,
增加破骨细胞的分化和骨吸收功能。因此,炎症诱导局部
例如类风湿性关节炎(RA),牙周炎,
感染和矫形植入物周围松动。炎症部位也以缺氧为特征,
其通过大多数未知的机制增强RANKL诱导的破骨细胞生成。病理性骨
在炎症/缺氧环境中的损失,例如RA滑膜,对标准抗再吸收剂
新疗法和新疗法的开发代表了重要的未满足的医疗需求。
基于我们的总体假设,即增强抑制机制代表了一种
在以前的项目中,有吸引力的替代治疗方法来抑制病理性骨吸收,
在此期间,我们研究了抑制代谢和表观遗传途径的机制,
破骨细胞生成并与炎性骨丢失有关。我们发现,IFN-γ,已被公认为
抑制炎症部位的骨丢失,重塑人类破骨细胞前体的表观基因组,
导致在关键破骨细胞的增强子和启动子处的染色质和组蛋白标记的重塑
基因.我们发现了一种新的破骨细胞内源性负调节因子COMMD 1,它的作用机制是:
抑制NF-κ B B信号传导和诱导合成代谢途径,
破骨细胞生成增加COMMD 1表达的等位基因变体与骨密度降低相关
在RA患者中,Commd 1的髓样缺失导致炎性骨丢失增加,
模型缺氧会使COMMD 1失活,这表明缺氧时这种抑制机制的废除
缺氧部位如RA滑膜导致病理性骨丢失。外在和内在
负调节因子IFN-γ和COMMD 1分别会聚以抑制表达和功能
对诱导破骨细胞代谢基因和途径重要的转录因子。这些结果
确定新的抑制机制,我们将描述这些机制,以获得可用于
开发新的方法来抑制破骨细胞生成和病理性骨吸收,
这些抑制机制的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lionel B Ivashkiv其他文献
Lionel B Ivashkiv的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lionel B Ivashkiv', 18)}}的其他基金
相似海外基金
Elucidation of bone resorption mechanism around implants caused by microgap dissection and establishment of suppression method
微间隙剥离引起种植体周围骨吸收机制的阐明及抑制方法的建立
- 批准号:
22K10080 - 财政年份:2022
- 资助金额:
$ 41.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAN OSTEOCLAST BIOMARKERS DETECT EXCESSIVE SUBCHONDRAL BONE RESORPTION IN RACEHORSES?
破骨细胞生物标志物可以检测赛马过度的软骨下骨吸收吗?
- 批准号:
RGPIN-2019-04966 - 财政年份:2022
- 资助金额:
$ 41.8万 - 项目类别:
Discovery Grants Program - Individual
Mechanisms of bone resorption in the cancer microenvironment.
癌症微环境中的骨吸收机制。
- 批准号:
22K10145 - 财政年份:2022
- 资助金额:
$ 41.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Secretory mechanism of GMSC derved exosomes and suppression of bone resorption by internalizing miRNA
GMSC 衍生的外泌体的分泌机制和通过内化 miRNA 抑制骨吸收
- 批准号:
21K21017 - 财政年份:2021
- 资助金额:
$ 41.8万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
CAN OSTEOCLAST BIOMARKERS DETECT EXCESSIVE SUBCHONDRAL BONE RESORPTION IN RACEHORSES?
破骨细胞生物标志物可以检测赛马过度的软骨下骨吸收吗?
- 批准号:
RGPIN-2019-04966 - 财政年份:2021
- 资助金额:
$ 41.8万 - 项目类别:
Discovery Grants Program - Individual
A new model for spatio-temporal coupling of bone formation and bone resorption governed by osteoclasts
破骨细胞控制的骨形成和骨吸收时空耦合的新模型
- 批准号:
10905262 - 财政年份:2020
- 资助金额:
$ 41.8万 - 项目类别:
CAN OSTEOCLAST BIOMARKERS DETECT EXCESSIVE SUBCHONDRAL BONE RESORPTION IN RACEHORSES?
破骨细胞生物标志物可以检测赛马过度的软骨下骨吸收吗?
- 批准号:
RGPIN-2019-04966 - 财政年份:2020
- 资助金额:
$ 41.8万 - 项目类别:
Discovery Grants Program - Individual
The Myokine Irisin Modulates Bone Resorption via Stimulation of Osteoclastogenesis
肌动素鸢尾素通过刺激破骨细胞生成调节骨吸收
- 批准号:
10228556 - 财政年份:2020
- 资助金额:
$ 41.8万 - 项目类别: